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ABSTRACT
We propose Janus, an approach for finding incompleteness bugs in
SMT solvers. The key insight is to mutate SMT formulas with local
weakening and strengthening rules that preserve the satisfiability
of the seed formula. The generated mutants are used to test SMT
solvers for incompleteness bugs, i.e., inputs on which SMT solvers
unexpectedly return unknown. We realized Janus on top of the SMT
solver fuzzing framework YinYang. From June to August 2021, we
stress-tested the two state-of-the-art SMT solvers Z3 and CVC5with
Janus and totally reported 31 incompleteness bugs. Out of these,
26 have been confirmed as unique bugs and 19 are already fixed
by the developers. Our diverse bug findings uncovered functional,
regression, and performance bugs—several triggered discussions
among the developers sharing their in-depth analysis.
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1 INTRODUCTION
Satisfiability Modulo Theories (SMT) solvers are fundamental tools
for software engineering and programming language advances e.g.,
symbolic execution [7, 12], program synthesis [23], solver-aided
programming [24], and program verification [9, 10]. An SMT solver
returns sat on an input formula 𝜑 if there is an assignment to 𝜑’s
variables that evaluates the formula to true, unsat if there is no such
assignment and unknown if the SMT solver cannot decide the for-
mula. Incompleteness bugs, i.e. unexpected unknown-results, impact
the performance of SMT solvers’ client applications frustrating their
developers—especially since SMT solvers are usually at the very
core of their client software solving NP-hard problems. Formula 𝜑
may realize a path constraint in a symbolic execution engine (e.g.
KLEE [7], Microsoft’s SAGE [13]), an access policy of a web service
(e.g. AWS’s Zelkova [2]), or a model of a safety-critical system (e.g.
AdaCores’s Spark [1]). Potential consequences of incompleteness
bugs include missed bugs in the software under test, slow (or even
non-terminating) verification of safety-critical or security-critical
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$ z3 bug.smt2

unknown

$ cat bug.smt2

(declare-const x Int)

(assert (forall ((v Int)) (= v (* x x))))

(check-sat)

Fig. 1: Command-line trace showing an incompleteness bug
in SMT solver Z3 on a simple SMT formula.
https://github.com/Z3Prover/z3/issues/5376

properties and other undesirable effects. Fig. 1 shows a incomplete-
ness bug in Z3 [8] which returns unknown on a simple SMT formula.
The first statement of the script declares an integer variable, the
second specifies a constraint, and the third queries the SMT solver.
Since we cannot choose an admissible value for x to satisfy the
constraint (as there is no square number equal to all integers), the
formula is unsatisfiable, and Z3 should return unsat. Why does Z3
fail at solving such a simple formula? As it turns out, it is caused by
a bug in the implementation of model-based quantifier instantiation
(MBQI). MBQI guesses values for the universal quantifiers (v in our
case) to check whether the formula is unsatisfiable. On inspecting
the issue deeper, we noticed that even if we run MBQI a million
iterations, Z3 could not decide the formula. 1 However, fixing a
random integer v which is not a square number would have been
enough to determine unsatisfiability. We reported this bug to the
issue tracker of Z3. Z3’s main developer promptly fixed it.

Incompletenesses in SMT solvers. Not every unknown-result indi-
cates a bug. As SMT solvers support undecidable logics, they are
necessarily incomplete. An SMT solver returns unknown on a for-
mula if it has no decision procedure to solve the formula or to
avoid a timeout. In practice, SMT solver can solve most problem
instances from undecidable logics relevant to users. Similar to decid-
able logics, SMT solver developers enhance their solvers by rewriter
rules, pre-processors etc. However, distinguishing expected from
unexpected incompletenesses is difficult and confuses users:

"I’m seeing a regression [...], where a lot of simple for-
mulas that used to be unsat now give unknown."

https://github.com/Z3Prover/z3/issues/5516

"The following code will produce unsat in z3 version
4.8.10.0 but is unknown in later versions."

https://github.com/Z3Prover/z3/issues/5438

1z3 smt.mbqi.max_iterations=1000000 bug.smt2

Fig. 1: Command-line trace showing an incompleteness bug
in SMT solver Z3 on a simple SMT formula.
https://github.com/Z3Prover/z3/issues/5376
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second specifies a constraint, and the third queries the SMT solver.
Since we cannot choose an admissible value for x to satisfy the
constraint (as there is no square number equal to all integers), the
formula is unsatisfiable, and Z3 should return unsat. Why does Z3
fail at solving such a simple formula? As it turns out, it is caused by
a bug in the implementation of model-based quantifier instantiation
(MBQI). MBQI guesses values for the universal quantifiers (v in our
case) to check whether the formula is unsatisfiable. On inspecting
the issue deeper, we noticed that even if we run MBQI a million
iterations, Z3 could not decide the formula. 1 However, fixing a
random integer v which is not a square number would have been
enough to determine unsatisfiability. We reported this bug to the
issue tracker of Z3. Z3’s main developer promptly fixed it.

Incompletenesses in SMT solvers. Not every unknown-result in-
dicates a bug. As SMT solvers support undecidable logics, they
are necessarily incomplete. An SMT solver returns unknown on a
formula if it has no decision procedure to solve the formula or to
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After careful analysis, the developer "The following
code will produce unsat in z3 version 4.8.10.0 but is
unknown in later versions."

https://github.com/Z3Prover/z3/issues/5438

1z3 smt.mbqi.max_iterations=1000000 bug.smt2

https://doi.org/10.1145/3551349.3560435
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"This is pretty unexpected since the query is small and
does not contain features where we would expect to see
performance regressions when updating releases."

https://github.com/Z3Prover/z3/issues/4702

The first comment is from a developer of LLVM static analyzer
Alive2 [16], the second from Haskell verifier SBV [11] and the third
issue is a query of software verifier SMACK [21]. Incompletenesses
are not only a Z3 issue. On CVC5’s issue tracker, users report similar
experiences 2. SMT solver developers address such issues by ad-
hoc fixes, pointing to the logic’s undecidability and suggesting
workarounds. Such hacks can lead to bugs masked as unknowns
and suggest that robust SMT solving is impossible.

Incompletenesses Testing with Janus. We propose Janus, an
incompleteness testing tool for SMT solvers. The key idea is to
weaken/strengthen seed formulas to generate mutant formulas and
stress-test the SMT solvers for incompleteness bugs. We consider
two types of incompletenesses in SMT solvers: (1) regressions incom-
pleteness and (2) implication incompleteness. Regression incomplete-
ness occurs when recent cause the SMT solver to be unexpectedly
incomplete. Implication incompleteness occurs when small changes
on the input formula, e.g. replacing = by >=, cause the SMT solver to
be incomplete. We believe these notions to be helpful for developers
in understanding the incompletenesses of their SMT solvers. We
have built Janus which can detect both types of incompleteness
bugs. From June - August 2021, we have been conducting a fuzzing
campaign with Janus. We have reported 31 incompleteness bugs
to the issue trackers of the state-of-the-art solvers Z3 and CVC5.
The developers have appreciated our reports and have modified the
solvers based on them: Our reports uncovered functional bugs in
algorithms, led to new rewrite rules, changed precedence orders
among existing rewrite rules, extended tactics etc. Janus’s mutation
rules are simple by design, for developers to inspect local changes
in formulas. We open-sourced Janus on Github. 3

Contributions. We make the following contributions:

• Incompleteness testing: We introduce and formalize in-
completeness testing for SMT solvers. While unexpected
incompletenesses in SMT solvers have been a known issue
for quite a long time, to the best of our knowledge, we are
the first to formalize and address this problem.

• Approach & tool: We propose Janus, an approach for find-
ing incompleteness bugs in SMT solvers with weakening and
strengthening rules. Janus can help SMT solver developers
to detect and understand incompleteness bugs.

• Bughunting campaign:With Janus, we conduct a 3-month
extensive testing campaign for incompletenesses bugs in the
two state-of-the-art SMT solvers Z3 and CVC5. We have
reported 31 bugs, out of which 26 were confirmed and 19
got fixed by the developers. The developer appreciated our
bug reports and commented on our issues with "Thank you
for reporting this issue.", "Thank you for the input." etc.

2https://github.com/cvc5/cvc5/issues/6274
3https://github.com/testsmt/janus

𝑈

𝐹unkn

𝐹bug

(a)

𝐹bug

𝐹regr 𝐹imp

(b)

Fig. 2: Classification of incompleteness bugs: Formulas 𝐹regr
and 𝐹imp are our targets for incompleteness testing.

2 PROBLEM STATEMENT
We consider the problem of finding incompleteness bugs 𝐹bugs i.e.,
unexpected incompletenesses in SMT solvers among the set of
inputs 𝐹unkn on which the SMT solver returns unknown from the
universe of SMT formulas 𝑈 . We approximate 𝐹bugs this by the
following taxonomy with two notions of incompleteness bugs.

Definition 1 (Incompletenesses in SMT solvers). We distinguish
the following two types of incompletenesses:

(1) Regression incompleteness:
𝑆𝑜𝑙𝑑 (𝜑) = 𝑠𝑎𝑡/𝑢𝑛𝑠𝑎𝑡 and 𝑆 (𝜑) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛

(2) Implication incompleteness:
𝑆 (𝜑) = 𝑠𝑎𝑡 and 𝑆 (𝜑 ′) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 if 𝜑 implies 𝜑 ′
𝑆 (𝜑) = 𝑢𝑛𝑠𝑎𝑡 and 𝑆 (𝜑 ′) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 if 𝜑 ′ implies 𝜑

where 𝑆 is an SMT solver, 𝑆𝑜𝑙𝑑 an earlier version of it, 𝜑 an SMT
formula and 𝜑 ′ a mutant based on 𝜑 .

Fig. 2 shows a classification of incompleteness bugs: (a) Universe
𝑈 of SMT formulas handled by an SMT solvers contains formulas
for which the SMT solver returns an unknown result (𝐹unkn) and their
subset the incompleteness bugs (𝐹bugs). (b) 𝐹bugs contains regres-
sion incompletenesses 𝐹regr and implication incompletenesses 𝐹imp .
Regression incompletenesses are caused by (recent) code changes
leading to an incompleteness on previously decided formulas. Typi-
cally they affect client software that worked correctly with an older
version of the SMT solver but fails after updating the SMT solver.
As an example, consider Fig. 3a where Z3’s trunk version can not
decide the input formula returning unknown but legacy version Z3
4.8.10 determines it to be unsat. We reported this issue on the issue
tracker of Z3. It got fixed within a week by the Z3 developers. Im-
plication incompletenesses occur when an SMT solver can decide
a given input formula 𝜑 but minor changes in the formula (the
mutation to 𝜑 ′) cause the solver to report unknown. Such formula
pairs can suggest possible improvements for SMT solvers, e.g., to

https://github.com/Z3Prover/z3/issues/4702
https://github.com/cvc5/cvc5/issues/6274
https://github.com/testsmt/janus
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$z3 5338. smt2

unknown

$ z3-4 .8.10 5338. smt2

unsat

$ cat 5338. smt2

(assert (forall ((v Int)) (= 0 v)))

(assert (= 0 (mod 0 0)))

(check-sat)

(a)

$ cvc5 -q 7009- mut.smt2 $ cvc5 -q 7009. smt2

sat unknown

$ cat 7009- mut.smt2 $ cat 7009. smt2

(declare-fun s () Real) (declare-fun s () Real)

(declare-fun k () Real) (declare-fun k () Real)

(assert (= (* s k) 1)) (assert (>= (* s k) 1))

(check-sat) (check-sat)

(b)

Fig. 3: The two types of incompletenesses in SMT solvers: (a) Regression incompleteness on a simple formula: legacy Z3 4.8.10
decides this formula as unsat, while the trunk version returned (Z3 #5338). (b) Implication incompleteness in CVC5 caused by
minor operator change from = to >= in the formula (CVC5 #7009).

formula rewriters, pre-processors, theory solvers etc.. If 𝜑 was gen-
erated by a client application of an SMT solver, fixing implication
incompletenesses makes the client application more robust. For an
example of an implication incompleteness, consider Fig. 3b where
the operator change from = to >= caused CVC5 to be incomplete.
Both bugs are real cases found by our approach Janus and fixed by
the SMT solver developers of Z3 and CVC5.

3 JANUS
This section presents Janus, our approach to tackle regression and
implication incompletenesses. We present (1) an approach overview,
(2) introduce necessary background and (3)Weakening and Strength-
ening, the core technique in Janus for incompleteness testing.

3.1 Approach Overview
Janus has two concurrent modes, one for finding regression incom-
pletenesses, and another one for finding implication incomplete-
nesses. We will describe them in separate examples.

Finding regression incompletenesses. Fig. 4 shows a mutation
chain of Janus for finding regression incompletenesses (from left
to right). Janus starts with a seed formula formula on which both
Z3 and legacy Z3-4.8.10 return sat (step 1). Janus then chooses a
rule from its rule set and applies it to the seed (step 2). The process
continues up to the point where Z3 returns unknown and Z3-4.8.10
returns sat. Janus detected a regression incompleteness. This is an
actual bug that we reported to the Z3’s issue tracker.

Finding implication incompletenesses. Fig. 5 shows a mutation
chain of Janus for finding implication incompletenesses (from left
to right). Janus starts with a satisfiable seed formula (step 1). Janus
then chose a satisfiability-preserving transformation rule, e.g., drop-
ping the first conjunct of the and expression. This results in a mu-
tated formula (step 2) which is satisfiable by construction. Janus
generates mutants this way until the solver returns unknown. SMT
solver developers can investigate the unknown case together with
the rule (step 𝑛 − 1 and 𝑛) that led to the unknown-result to un-
derstand why the SMT solver has failed. This is a real case, i.e. an
actual bug that we reported to the issue tracker of CVC5.

3.2 Background
This section gives background on (1) SMT-LIB, the input language
of SMT solvers, (2) logics of SMT-LIB, and (3) basic definitions.

Input language. An SMT-LIB script consists of commands in-
structing an SMT solver to create formulas and process them. We
focus on the following language subset: declare-const to declare
a constant, assert to specify a constraint and check-sat to check
satisfiability of the asserted formula. Multiple assertions can be
viewed as the conjunction of each constraint. We write the univer-
sal and existential quantification of a term t over a variable x with
sort T as (forall ((x T)) t) and (exists ((x T)) t) respectively.

Logics. SMT-LIB’s logics can be roughly subdivided into quantified
(no prefix) and quantifier-free (QF), linear (L) and non-linear (N)
theories and the corresponding theory type. For instance, QF_LIA
is quantifier-free linear integer arithmetic, NRA is nonlinear quan-
tified real arithmetic, QF_BV is quantifier-free bitvector logic, and
A defines quantified array logic. Most logics are NP-hard, some
are even undecidable. For a comprehensive list of logics and their
complexities, we refer to the SMT-LIB website [3].

Basic definitions. We consider first-order logic formulas of the sat-
isfiability modulo theories (SMT). Such a formula 𝜑 is satisfiable if
there is at least one assignment (called model) on its variables under
which 𝜑 evaluates to true. Otherwise, 𝜑 is unsatisfiable. Formulas
are realized by SMT-LIB programs [3] which we view as abstract
syntax trees. We use standard notions of typed higher-order logic,
such as term, quantifier, function, etc., and write expression for
term occurrences. The set of free variables in a formula 𝜑 is denoted
as 𝐹𝑉 (𝜑). We define a subformula to be a predicate represented by
a subtree of the abstract syntax tree of 𝜑 . We distinguish between
multiple occurrences of syntactically equal parts within a formula.
We define 𝜑 [𝐹 ↦→ 𝐺] to be the formula represented by an abstract
syntax tree of an SMT program where 𝐹 is replaced by 𝐺 .

3.3 Weakening & Strengthening
This section presentsWeakening and Strengthening, our approach to
tackle regression and implication incompletenesses in SMT solvers.
We first define the notion of weaker/stronger for SMT-LIB formulas
and then introduce the parity concept for subformulas.

Fig. 3: The two types of incompletenesses in SMT solvers: (a) Regression incompleteness on a simple formula: legacy Z3 4.8.10
decides this formula as unsat, while the trunk version returned (Z3 #5338). (b) Implication incompleteness in CVC5 caused by
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1 2 . . . n − 1 n
(declare -const x Int)

(declare -const x9 Bool)

(declare -const x8 Bool)

(assert (and x8 x9 (=

(str.from_int x)

(str.from_int (- x)))))

(check -sat)

(declare -const x Int)

(declare -const x9 Bool)

(assert (and x9 (=

(str.from_int x)

(str.from_int (- x)))))

(check -sat)

(declare -const x Int)

(declare -const x9 Bool)

(assert (or x9 (=

(str.from_int x)

(str.from_int (- x)))))

(check -sat)

(declare -const x Int)

(declare -const x9 Bool)

(assert (or x9

(str.prefixof

(str.from_int x)

(str.from_int (- x)))))

(check -sat)

∧

∧

𝑥8 𝑥9

=

𝐸1 𝐸2

∧

𝑥9 =

𝐸1 𝐸2
. . .

∨

𝑥9 =

𝐸1 𝐸2

∨

𝑥9 str .prefixof

𝐸1 𝐸2

Z3-4.8.10 sat sat . . . sat sat

Z3 sat sat . . . sat unknown

✓ ✓ . . . ✓ ✗

Fig. 4: A sample mutation chain illustrating how Janus finds a regression incompleteness in Z3 (Z3 #5381).

1 2 . . . n − 1 n
(declare -const s Real)

(declare -const k Real)

(assert (and (= s k)

(= (* s k) 1)))

(check -sat)

(declare -const s Real)

(declare -const k Real)

(assert (and (= (* s k) 1)))

(check -sat)

. . .
(declare -const k Real)

(declare -const s Real)

(assert (= (* s k) 1))

(check -sat)

(declare -const k Real)

(declare -const s Real)

(assert (>= (* s k) 1))

(check -sat)

∧

=

· 1

𝑠 𝑘

=

𝑠 𝑘

∧

=

· 1

𝑠 𝑘
. . .

=

· 1

𝑠 𝑘

≥

· 1

𝑠 𝑘

CVC5 sat sat . . . sat unknown

✓ ✓ . . . ✓ ✗

Fig. 5: A sample mutation chain illustrating how Janus finds implication incompleteness in CVC5 (CVC5 #7009).

Definition 2 (weaker/stronger). Let 𝜑1, 𝜑2 be formulas with the
same set of free variables i.e., 𝐹𝑉 (𝜑1) = 𝐹𝑉 (𝜑2) = {𝑥1, · · · , 𝑥𝑛}. We
call 𝜑1 weaker than 𝜑2 if ∀𝑥1, . . . , 𝑥𝑛 : 𝜑2 → 𝜑1.

Definition 3 (parity). For a formula 𝜑 with a subformula 𝐹 , we
define parity(𝐹, 𝜑) as

parity(𝐹, 𝜑) :=




1 if 𝐹 represents 𝜑
−1 · parity(𝐹, 𝜑 ′) if 𝜑 = ¬𝜑 ′
parity(𝐹, 𝜑1) if 𝜑 = 𝜑1 ∧ 𝜑2 and 𝐹 in 𝜑1
parity(𝐹, 𝜑2) if 𝜑 = 𝜑1 ∧ 𝜑2 and 𝐹 in 𝜑2
parity(𝐹, 𝜑 ′) if 𝜑 = ∃𝑥 : 𝜑 ′

If parity(𝐹, 𝜑) = 1, then 𝐹 is called positive and negative otherwise.

The parity function links local weakening and strengthening of
a subformula to global weakening and strengthening of the over-
all formula. More precisely, the parity of a subformula captures
whether weakening or strengthening has the same or the opposite
effect on the surrounding formula.

Lemma 1. Let 𝜑 be a formula with a subformula 𝐹 . For any𝐺 weaker
than 𝐹 , we have:

if 𝐹 positive in 𝜑 then ∀𝑥1, . . . , 𝑥𝑛 : 𝜑 → 𝜑 [𝐹 ↦→ 𝐺]
if 𝐹 negative in 𝜑 then ∀𝑥1, . . . , 𝑥𝑛 : 𝜑 [𝐹 ↦→ 𝐺] → 𝜑

with the set of free variables 𝐹𝑉 (𝜑) = 𝑥1, . . . , 𝑥𝑛 .

Fig. 4: A sample mutation chain illustrating how Janus finds a regression incompleteness in Z3 (Z3 #5381).
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1 2 . . . n − 1 n
(declare -const x Int)

(declare -const x9 Bool)

(declare -const x8 Bool)

(assert (and x8 x9 (=

(str.from_int x)

(str.from_int (- x)))))

(check -sat)

(declare -const x Int)

(declare -const x9 Bool)

(assert (and x9 (=

(str.from_int x)

(str.from_int (- x)))))

(check -sat)

(declare -const x Int)

(declare -const x9 Bool)

(assert (or x9 (=

(str.from_int x)

(str.from_int (- x)))))

(check -sat)

(declare -const x Int)

(declare -const x9 Bool)

(assert (or x9

(str.prefixof

(str.from_int x)

(str.from_int (- x)))))

(check -sat)

∧

∧

𝑥8 𝑥9

=

𝐸1 𝐸2

∧

𝑥9 =

𝐸1 𝐸2
. . .

∨

𝑥9 =

𝐸1 𝐸2

∨

𝑥9 str .prefixof

𝐸1 𝐸2

Z3-4.8.10 sat sat . . . sat sat

Z3 sat sat . . . sat unknown

✓ ✓ . . . ✓ ✗

Fig. 4: A sample mutation chain illustrating how Janus finds a regression incompleteness in Z3 (Z3 #5381).

1 2 . . . n − 1 n
(declare -const s Real)

(declare -const k Real)

(assert (and (= s k)

(= (* s k) 1)))

(check -sat)

(declare -const s Real)

(declare -const k Real)

(assert (and (= (* s k) 1)))

(check -sat)

. . .
(declare -const k Real)

(declare -const s Real)

(assert (= (* s k) 1))

(check -sat)

(declare -const k Real)

(declare -const s Real)

(assert (>= (* s k) 1))

(check -sat)

∧

=

· 1

𝑠 𝑘

=

𝑠 𝑘

∧

=

· 1

𝑠 𝑘
. . .

=

· 1

𝑠 𝑘

≥

· 1

𝑠 𝑘

CVC5 sat sat . . . sat unknown

✓ ✓ . . . ✓ ✗

Fig. 5: A sample mutation chain illustrating how Janus finds implication incompleteness in CVC5 (CVC5 #7009).

Definition 2 (weaker/stronger). Let 𝜑1, 𝜑2 be formulas with the
same set of free variables i.e., 𝐹𝑉 (𝜑1) = 𝐹𝑉 (𝜑2) = {𝑥1, · · · , 𝑥𝑛}. We
call 𝜑1 weaker than 𝜑2 if ∀𝑥1, . . . , 𝑥𝑛 : 𝜑2 → 𝜑1.

Definition 3 (parity). For a formula 𝜑 with a subformula 𝐹 , we
define parity(𝐹, 𝜑) as

parity(𝐹, 𝜑) :=




1 if 𝐹 represents 𝜑
−1 · parity(𝐹, 𝜑 ′) if 𝜑 = ¬𝜑 ′
parity(𝐹, 𝜑1) if 𝜑 = 𝜑1 ∧ 𝜑2 and 𝐹 in 𝜑1
parity(𝐹, 𝜑2) if 𝜑 = 𝜑1 ∧ 𝜑2 and 𝐹 in 𝜑2
parity(𝐹, 𝜑 ′) if 𝜑 = ∃𝑥 : 𝜑 ′

If parity(𝐹, 𝜑) = 1, then 𝐹 is called positive and negative otherwise.

The parity function links local weakening and strengthening of
a subformula to global weakening and strengthening of the over-
all formula. More precisely, the parity of a subformula captures
whether weakening or strengthening has the same or the opposite
effect on the surrounding formula.

Lemma 1. Let 𝜑 be a formula with a subformula 𝐹 . For any𝐺 weaker
than 𝐹 , we have:

if 𝐹 positive in 𝜑 then ∀𝑥1, . . . , 𝑥𝑛 : 𝜑 → 𝜑 [𝐹 ↦→ 𝐺]
if 𝐹 negative in 𝜑 then ∀𝑥1, . . . , 𝑥𝑛 : 𝜑 [𝐹 ↦→ 𝐺] → 𝜑

with the set of free variables 𝐹𝑉 (𝜑) = 𝑥1, . . . , 𝑥𝑛 .

Fig. 5: A sample mutation chain illustrating how Janus finds implication incompleteness in CVC5 (CVC5 #7009).

Definition 2 (weaker/stronger). Let 𝜑1, 𝜑2 be formulas with the
same set of free variables i.e., 𝐹𝑉 (𝜑1) = 𝐹𝑉 (𝜑2) = {𝑥1, · · · , 𝑥𝑛}. We
call 𝜑1 weaker than 𝜑2 if ∀𝑥1, . . . , 𝑥𝑛 : 𝜑2 → 𝜑1.

Definition 3 (parity). For a formula 𝜑 with a subformula 𝐹 , we
define parity(𝐹, 𝜑) as

parity(𝐹, 𝜑) :=




1 if 𝐹 represents 𝜑
−1 · parity(𝐹, 𝜑′) if 𝜑 = ¬𝜑 ′
parity(𝐹, 𝜑1) if 𝜑 = 𝜑1 ∧ 𝜑2 and 𝐹 in 𝜑1
parity(𝐹, 𝜑2) if 𝜑 = 𝜑1 ∧ 𝜑2 and 𝐹 in 𝜑2
parity(𝐹, 𝜑′) if 𝜑 = ∃𝑥 : 𝜑 ′

If parity(𝐹, 𝜑) = 1, then 𝐹 is called positive and negative otherwise.

The parity function links local weakening and strengthening of
a subformula to global weakening and strengthening of the over-
all formula. More precisely, the parity of a subformula captures
whether weakening or strengthening has the same or the opposite
effect on the surrounding formula.

Lemma 1. Let 𝜑 be a formula with a subformula 𝐹 . For any𝐺 weaker
than 𝐹 , we have:

if 𝐹 positive in 𝜑 then ∀𝑥1, . . . , 𝑥𝑛 : 𝜑 → 𝜑 [𝐹 ↦→ 𝐺]
if 𝐹 negative in 𝜑 then ∀𝑥1, . . . , 𝑥𝑛 : 𝜑 [𝐹 ↦→ 𝐺] → 𝜑

with the set of free variables 𝐹𝑉 (𝜑) = 𝑥1, . . . , 𝑥𝑛 .

https://github.com/Z3Prover/z3/issues/5381
https://github.com/cvc5/cvc5/issues/7009
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Proof. By induction over 𝜑 . For every case, we only consider 𝐹
being positive in 𝜑 as the negative cases are symmetric.

Case 𝜑 = 𝐹 : direct.

Case𝜑 = ¬𝜑1: Let𝑥1, . . . , 𝑥𝑛 = 𝐹𝑉 (𝜑) = 𝐹𝑉 (𝜑1). Say parity(𝐹, 𝜑) =
1, then parity(𝐹, 𝜑1) = −1 and by induction hypothesis for 𝜑1:

∀𝑥1, . . . , 𝑥𝑛 : 𝜑1 [𝐹 ↦→ 𝐺] → 𝜑1

By contraposition, we obtain the opposite implication for 𝜑 .

Case 𝜑 = 𝜑1 ∧ 𝜑2: Let 𝑥1, . . . , 𝑥𝑛 = 𝐹𝑉 (𝜑). Without loss of general-
ity, assume 𝐹 is a subformula of 𝜑1 and 𝐹𝑉 (𝜑1) = 𝑥1, . . . , 𝑥𝑘 with
𝑘 ≤ 𝑛. Consider parity(𝐹, 𝜑) = 1, then parity(𝐹, 𝜑1) = 1 and by
induction hypothesis for 𝜑1:

∀𝑥1, . . . , 𝑥𝑘 : 𝜑1 → 𝜑1 [𝐹 ↦→ 𝐺]
Since 𝑥𝑘+1, . . . , 𝑥𝑛 ∉ 𝐹𝑉 (𝜑1) this extends to:

∀𝑥1, . . . , 𝑥𝑛 : 𝜑1 ∧ 𝜑2 → (𝜑1 ∧ 𝜑2) [𝐹 ↦→ 𝐺]
Note that because 𝐹 is a subtree of the abstract syntax tree of 𝜑1
the substitution [𝐹 ↦→ 𝐺] has no effect when applied to 𝜑2.

Case 𝜑 = ∃𝑥 : 𝜑1: Assume parity(𝐹, 𝜑) = 1, then parity(𝐹, 𝜑1) = 1
and by induction hypothesis for 𝜑1:

∀𝑥1, . . . , 𝑥𝑛 : 𝜑1 → 𝜑1 [𝐹 ↦→ 𝐺]
where 𝑥1, . . . , 𝑥𝑛 = 𝐹𝑉 (𝜑1). If 𝑥 does not occur free in 𝜑1, then
𝐹𝑉 (𝜑) = 𝐹𝑉 (𝜑1) andwe can directly conclude the same implication
for 𝜑 . Otherwise 𝑥 ∈ 𝐹𝑉 (𝜑1) and without loss of generality 𝑥 = 𝑥𝑛 .
Then the induction hypothesis implies:

∀𝑥1, . . . , 𝑥𝑛−1 : (∃𝑥𝑛 : 𝜑1) → (∃𝑥𝑛 : 𝜑1 [𝐹 ↦→ 𝐺])
⇐⇒∀𝑥1, . . . , 𝑥𝑛−1 : (∃𝑥𝑛 : 𝜑1) → ((∃𝑥𝑛 : 𝜑1) [𝐹 ↦→ 𝐺])

Since 𝐹𝑉 (𝜑) = 𝐹𝑉 (𝜑1) − {𝑥}, concluding the proof. □

Theorem 1. Let 𝐹, 𝐹𝑤 , 𝐹𝑠 be formulas and 𝜑 a sentence such that 𝐹
is a subformula of 𝜑 , 𝐹𝑤 is weaker than 𝐹 and 𝐹𝑠 is stronger than 𝐹 .
Then the following statements hold:

(1) 𝐹 positive, 𝜑 satisfiable =⇒ 𝜑 [𝐹 ↦→ 𝐹𝑤] satisfiable
(2) 𝐹 negative, 𝜑 satisfiable =⇒ 𝜑 [𝐹 ↦→ 𝐹𝑠 ] satisfiable
(3) 𝐹 negative, 𝜑 unsatisfiable =⇒ 𝜑 [𝐹 ↦→ 𝐹𝑤] unsatisfiable
(4) 𝐹 positive, 𝜑 unsatisfiable =⇒ 𝜑 [𝐹 ↦→ 𝐹𝑠 ] unsatisfiable

Proof. Cases (1) - (4) are direct corollaries of Lemma 1. □

Mutation rules. A rule consists of two patterns, the left and right-
hand side of an implication or equivalence. Many of the rules are
parametrized over additional terms, e.g. 𝑡1 = 𝑡2 of Reals is equivalent
to 𝑡1 + 𝑐 = 𝑡2 + 𝑐 for any term 𝑐 of sort Real. We instantiate such
parameters in a two stage process: (1) search the current SMT-file
for terms of the required sort. If there are any, choose one randomly.
Otherwise, (2) choose randomly from a set of literals. Rules can

cvc5 z3release

sat
unsat

0 25 50 75 100 0 25 50 75 100

1.2
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sp

ee
du

p

Fig. 6: Z3 and CVC5 runtime performance averages on 1000
evenly distributed sat/unsat nonlinear arithmetic bench-
marks per weakening/strengthening iteration (1-100). Time-
out: 8 seconds, files on which timeouts occurred excluded.

be implemented from left to right, right to left or both but we
will omit this detail and present them only on the logical level.
Our implemented rule set is shown in Table 1. Multiple rules are
equivalences, e.g., the rule for "or", and implication "→". We include
such rules as they diversify the set of generated mutants. They
can help trigger other rules to become applicable. Janus applies
"equivalence rules" in both directions to avoid getting stuck.

Intuition behind Weakening and Strengthening. Weakening
and Strengthening’s key goal is verifying the robustness of SMT
solvers concerning their completeness. Users expect small changes
on a decidable formula 𝜑 to yield a decidable mutated formula 𝜑 ′.
If an SMT solver returns unknown on 𝜑 ′, it can indicate either an
incompleteness bug or an expected incompleteness. Weakening
a satisfiable formula (𝜑 to a formula 𝜑 ′) relaxes 𝜑’s constraints.
Hence, 𝜑 ′ admits more solutions than 𝜑 . Solving 𝜑 ′ should hence
be easier than solving 𝜑 . Strengthening an unsatisfiable formula
(𝜑 to a formula 𝜑 ′) tightens 𝜑’s constraints making it even more
obvious to the SMT solver that 𝜑 ′ should be unsatisfiable. We view
SMT solvers as black-boxes without any assumptions about the
decision procedures used for a given formula. There is also no
guarantee for the mutated formulas 𝜑 ′ to be easier to solve than
𝜑 . However, this holds on average, as the following experiment
shows. We sampled 1000 nonlinear benchmarks (500 satisfiable, 500
unsatisfiable) and measured Z3 and CVC5’s runtime performance,
after 100 weakening and strengthening steps and measured the
average speedup. Fig 6 shows the results of this experiment.
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Table 1: Weakening and strengthening rules for core logic, reals and integers, strings, and regexes. Symmetric cases are omitted
for brevity. The legend column describes newly introduced symbols per group.

Type Strong Weak Legend

Real/Int 𝑛1, 𝑛2 ∈ R or 𝑛1, 𝑛2 ∈ N
𝑛1 = 𝑛2 𝑛1 ≥ 𝑛2 | 𝑛1 ≤ 𝑛2
𝑛1 > 𝑛2 𝑛1 ≥ 𝑛2 | 𝑛1 ≠ 𝑛2
𝑛1 < 𝑛2 𝑛1 ≤ 𝑛2 | 𝑛1 ≠ 𝑛2
𝑛1 ⊙ 𝑛2 (𝑛1 + 𝑐) ⊙ (𝑛2 + 𝑐) | 𝑛1 ⊙ (𝑛2 + 𝑐) | 𝑛1 ⊙ (𝑛2 + 𝑐) 𝑐 ∈ N or 𝑐 ∈ R

⊙ ∈ {=, >, <, ≤, ≥}

Bool 𝜑, 𝜑1, 𝜑2 are boolean formulas
𝜑1 ∧ 𝜑2 𝜑1 ∨ 𝜑2 | 𝜑1
𝜑1 ⊕ 𝜑2 𝜑1 ∨ 𝜑2 ⊕ is the logical xor
∀𝑥 : 𝜑 | 𝜑 [𝑥 ↦→ 𝐵] ∃𝑥 : 𝜑 𝐵 is an expression of same type as 𝑥
𝑥1 = . . . = 𝑥𝑛 𝑓 (𝑥1) = . . . = 𝑓 (𝑥2) 𝑥1, · · · , 𝑥𝑛 are terms of arbitrary type

𝑓 : SMT-LIB built-in function
𝜑1 ∨ 𝜑2 ∃𝑏 : ite(𝑏, 𝜑1, 𝜑2) ite is the if-than-else operator

𝑏 is a boolean variable
ite(𝐵, 𝜑1, 𝜑2) 𝐵 → 𝜑1 | ¬𝐵 → 𝜑2
𝜑1 → 𝜑2 ite(𝜑1, 𝜑2,⊤) | ite(¬𝜑1,⊤, 𝜑2) | ∀𝑏 : (𝜑1 ∧ 𝑏 → 𝜑2 ∧ 𝑏)
𝜑1 ∨ 𝜑2 ¬𝜑1 → 𝜑2
∀𝑥 .𝜑 𝜑 [𝑥 ↦→ 𝐵]
𝜑1 𝜑1 ∨ 𝜑2

String 𝑠1, 𝑠2, 𝑠3 are strings
𝑠1 = 𝑠2 𝑠1 ≠ (𝑠1 ++ 𝑠3) | 𝑠1 ≤𝑠 𝑠2 | prefixof (𝑠1, 𝑠2) ∧

suffixof (𝑠1, 𝑠2) | prefixof (𝑠1, 𝑠2) ∧ prefixof (𝑠2, 𝑠1) |
contains(𝑠1, 𝑠2) | suffixof (𝑠1, 𝑠2) ∧ suffixof (𝑠2, 𝑠1) |
prefixof (𝑠1, 𝑠2) | suffixof (𝑠1, 𝑠2)

++: string concatenation

𝑠1 <𝑠 𝑠2 𝑠1 ≠ 𝑠2 | 𝑠1 ≤𝑠 𝑠2 ≤𝑠 : lexicographical ordering
𝑠1 ≤𝑠 𝑠2 substr (𝑠1, 0, ite(0 ≤ 𝑖 ≤ len(𝑠1) − 1, 𝑖, len(𝑠1))) ≤𝑠 𝑠2 |

𝑠1 ≤𝑠 (𝑠2 ++ 𝑠3)
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑠1, 𝑠2) 𝑙𝑒𝑛(𝑠1) ≥ 𝑙𝑒𝑛(𝑠2)

Regex 𝑟, 𝑟1, · · · , 𝑟𝑛 are regexes, 𝑛 ∈ N
𝑟 𝑟+ +: Kleene plus
𝑟 loop(1, 𝑛, 𝑟 ) 𝑙𝑜𝑜𝑝 (𝑖, 𝑛, 𝑟 ) = 𝐿(𝑟 )𝑖 ∪ · · · ∪ 𝐿(𝑟 )𝑛
𝑟 opt (𝑟 ) opt (𝑟 ) := union(𝑟, (str.to_re ""))
𝑟1 + +𝑟 . . . + +𝑟 𝑟𝑛 union(𝑟1, . . . , 𝑟𝑛)𝑛 ++𝑟 : regex concat
𝑟 ∀𝑥 : union(𝑟, 𝑠) for an arbitrary string 𝑠
𝑟+ 𝑟∗ ∗: Kleene star
range(𝑠1, 𝑠2) range(𝑠3, 𝑠4) for fixed strings 𝑠1, 𝑠2 choose strings

𝑠3, 𝑠4 s.t. range(𝑠1, 𝑠2)range(𝑠3, 𝑠4)

Janus’ Implementation. We built Januson top of the SMT solver
testing framework YinYang [27] in 1.5k lines of Python code. Our
implementation first parses and typechecks a given seed formula
before incrementally applying randomly selected mutation rules.
After a fixed number of mutations, we restart the mutation chain
from the seed. Typechecking allows us to apply rules only when
they are definitely applicable and choose random terms of the cor-
rect type. At eachmutation step, we forward themutants to the SMT
solvers to test for regression and implication incompletenesses.

4 EVALUATION
From June 2021 - August 2021, we have been conducting a fuzzing
campaign with Janus. We deployed Januson a AMD Ryzen Thread-
ripper 3990X 64-Core Processorwith 256GB of RAM runningUbuntu
18.04. We experimented with the configuration of the fuzzer and a
typical instance used 300 iterations per seed, 25 incremental muta-
tions before resetting the seed and a solver timeout of 10 seconds.
We tested the two state-of-the-art SMT solvers Z3 [8] and CVC5 [4]
because (1) they are the most popular SMT solvers (Z3 has 6, 7𝑘
stars on GitHub and CVC5 has 500+ stars on GitHub) (2) Z3 and
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Alg. 1: Interestingness test for implication incompletenesses

1 Procedure interestingness_implication(𝜑 ,𝑚, 𝑆):
2 𝑟1 ← 𝑆 (𝜑);
3 if 𝑟1 ∈ {sat, unsat} then
4 candidates← {𝑒 ∈ expr (𝜑) |𝑚 is applicable to e} ;
5 for 𝑐 in candidates do
6 𝜓 ← apply𝑚 to 𝑐 in 𝜑 ;
7 𝑟2 ← 𝑆 (𝜓 ) ;
8 if 𝑟2 = unknown then
9 return 0 ;

10 return 1 ;

CVC5 support most logics of the SMT-LIB standard, while the other
SMT solvers only partially support the SMT-LIB standard (3) most
applications depending on SMT solvers use either Z3 or CVC5 (or
even both) since both feature APIs in C++, Python etc.. We daily
rebuilt the trunk versions of Z3 and CVC5 respectively, and tested
them in their default modes, i.e., without any additional options be-
sides --strings-exp for CVC5 to enable support for string logic. As
seed files, we used SMT-LIB benchmarks from the YinYang project
which are categorized into satisfiable and unsatisfiable instances. 4

Bug trigger reduction. We reduce bug triggers of both regression
and implication incompletenesses with the SMT-specific test-case
reducer ddsmt [18]. The tool repeatedly shrinks the bug triggering
formula while maintaining an invariant specified by a user-defined
script called the interestingness test. The interestingness test is exe-
cuted after each shrinking operation of ddsmt returning exit code 0
if the shrinking operation was admissible and 1 otherwise. Based on
this feedback, ddsmt shrinks the bug triggering formula to a locally
minimal size, usually small enough for reporting on the respective
issue trackers of Z3 and CVC5. For regressions, where one solver
reports sat/unsat on the bug-triggering formulas and another one
reports unknown unknown, we specify the interestingness test by
string matching the unknown of the second solver. Reducing impli-
cation incompletenesses is more challenging as we have to keep
two related formulas in sync. Alg. 1 shows an algorithm realizing
the interestingness test for implication incompletenesses. The pro-
cedure takes the bug-triggering formula 𝜑 , the rule𝑚, and an SMT
solver 𝑆 as its input. We first solve 𝜑 with 𝑆 (line 2). If SMT solver
𝑆 decides 𝜑 , we proceed; otherwise, we exit with 1, indicating that
𝜑 is not interesting (line 10). We retrieve all subformulas from 𝜑
on which𝑚 is applicable in the set candidates (line 4). We apply
𝑚 to each subformula 𝑐 , and obtain𝜓 (line 6). We check whether
𝑆 returns unknown on it (line 9) and if that is the case, we return 0
indicating that formula 𝜑 is an interesting input.

Bug trigger selection. In our experiments, fuzzing for incomplete-
nesses bugs with Janus resulted in too many bug triggers to report
directly to the issue trackers of the solvers. We hence manually
selected the most interesting cases. One source of cases is the fact
that solvers typically implement the full SMT-LIB standard in pars-
ing, but their reasoning engines only support a subset. We filter out
4https://github.com/testsmt/semantic-fusion-seeds

formulas with such unsupported features using basic text search
tools, as they trivially trigger an unknown response and provide
no new insights to the developers. We continuously adapted our
selection process to the developer feedback and solver-specific be-
haviors. The developers informed us of language features that are
not expected to be supported well or how specific logic solvers and
options should be used to validate incompletenesses.

Bug Findings. Fig. 7a shows the results of our bug hunting cam-
paign with Janus. We have totally reported 31 incompleteness bugs,
13 in Z3 and 18 in CVC5. Out of these, 26 bugs got confirmed and
19 bugs got fixed. Strikingly, while there are 8 fixes in Z3, only one
incompleteness bug in CVC5 got fixed. We can partially explain this
by the different development styles of Z3 and CVC5. In Z3, many
incompleteness bugs were fixed on the spot by Z3’s main devel-
oper with the fix being promptly pushed to Z3’s master branch. In
CVC5, on the other hand, several developers discuss issues, file pull
requests, etc.Hence several of our reports are still in the queue wait-
ing to be merged to CVC5’s master branch. Among the confirmed
bugs, we found 19 regression incompleteness bugs and 2 implica-
tion incompleteness bugs (see Fig. 7b). We found more regression
bugs since the reduction process is faster. Out of the 31 reported
bugs, 5 regression incompletenesses in Z3 were categorized as ‘re-
jected’. Z3’s main developer considered two of them acceptable
incompletenesses in Z3. Another one was rejected by Z3’s main
developer since the bug did not trigger in Z3’s new core. Z3’s new
core is an experimental configuration, intended at replacing the
Z3’s current core in the future. Hence, Z3’s main developer saw
no benefit in fixing this issue in Z3’s current core. Another bug
was rejected by Z3’s main developers since fixing it would interfere
with axioms that string solvers should create on the fly. Yet another
one disappeared after a recent code change in Z3.

Logics distribution among the bugs. Consider Fig. 8 for an
overview of the distribution among the reported bugs. Among the
reported bugs, we found 7 bugs in SLIA, 6 in NIA, 5 in QF_NRA,
3 in NRA, 2 in QF_S, 2 QF_SLIA, and 1 in QF_SNIA, S and LRA,
respectively. In CVC5, many bugs are in quantified string logic
while in Z3 many bugs are the in nonlinear logics.

Duration of the campaign & Statistics. Consider Fig. 9. The bug
findings are evenly distributed for the fuzzing campaign. In the
last two weeks, we, in fact, withheld some of our bug findings to
give the developers time to fix the pending bugs from earlier weeks.
During the campaign (from June 2021 to Aug 2021) Janus totally
generated 106 million tests, among which 760𝑘 were unknown
results. Most of these were duplicates; after manual bug trigger
selection 426 remained. Since this was still quite a large number to
be reported, we were conservative in reporting them to the issue
trackers of Z3 and CVC5. Totally, we then reported 31 bugs to the
issue trackers of the solvers for the developers to inspect.

5 BUG SAMPLES
This section analyzes exemplary bug reports to illustrate the diverse
incompleteness bugs that Janus can find, all depicted in Fig. 10.
Faulty MBQI implementation in Z3 (Fig. 10a). The formula

shows a bug in Z3’s implementation of Model-Based Quantifier
Instantiation (MBQI), a procedure for quantifier elimination. For

https://github.com/testsmt/semantic-fusion-seeds
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Status Z3 CVC5 Total

Reported 13 18 31
Confirmed 8 18 26
Fixed 8 11 19
Rejected 5 0 5

(a)

Type Z3 CVC5 Total

Regression 7 12 19
Implication 1 6 7

(b)

Fig. 7: (a) Statuses of incompleteness bug reports, (b) types
among the confirmed incompleteness bug reports.
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Fig. 8: Bug logic distribution of the reported bugs.

0

2

4

6

2 4 6 8 10 12
week

#b
ug

s

Fig. 9: Incompleteness bugs reported from the start of the
bug hunting campaign (week 1) to its end (week 12).

the reported formula, MBQI repeatedly guesses values for uni-
versally quantified variables, i.e., x in our case. However, Z3 fails
on solving this simple formula, which is unexpected as many
values for x would satisfy the formula. Interpreting the seman-
tics of the "Is there is a square number equal to all integers?"
lets us decide the formula to be unsatisfiable. A deeper analysis
revealed that if we massively increase MBQI’s iteration cutoff
to one million, Z3 could still not decide the formula. Z3’s main
developer fixed this bug, the cause was an uninitialized variable.

Bug in CVC5 rewrite precedence rules (Fig. 10b). Intuitively,
the formula is easily satisfiable by setting variable T to true in
the first assert. However, CVC5 returns unknown on the formula.
The issue was detected as a regression, stable legacy releases
CVC5 1.8 and 1.7 can decide the formula. Thanks to our report,
CVC5 developers discovered that a set of newer rewrite rules
were taking precedence over older rewrites. This prevented
solving this formula. A CVC5 developer described this as follows:

"Commit 11c1fba added new rewrites for ITE. Due to the new
rewrites taking precedence over existing rewrites, it could hap-
pen that some of the previous rewrites did not apply anymore
even though they would have further simplified the ITE."

The bug was roughly one-year latent which the referenced com-
mit indicates. It was undetected by the ongoing SMT solver
fuzzing campaigns and CVC5’s test suites. The developers fixed
this bug by adjusting the rewriter precedences.

Completeness regression in Z3’s LRA logic (Fig. 10c). The for-
mula belongs to essentially propositional logic which is decid-
able. The formula contains a single quantifier over a boolean
variable which could be eliminated by grounding (setting x to
true and false). Hence, we would expect SMT solvers to decide
the formula. However, Z3 returns unknown for it. Z3’s main de-
veloper fixed the bug by refining the default tactic of Z3.

Incompleteness bug on string formula in Z3 (Fig. 10d). The for-
mula equates two str.is_digit expressions, each with a free
string variable as single argument. Clearly, this formula should
be sat. However, Z3 could not decide it, returning unknown since
Z3 did not handle str.is_digit although it can decide other
string formulas with such expressions. The bug was detected as
implication incompleteness and got promptly fixed.

Completeness regression in CVC5’s QF_NRA logic (Fig. 10e).
The formula shows a completeness regression in CVC5 on a for-
mula which legacy CVC5 1.7 could still decide. The bug was
confirmed by a CVC5 developer and was marked with the label
"bug" on the CVC5 issue tracker reflecting its high priority.

Regression with quantifier elimination in CVC5 (Fig. 10f). The
formula contains a single existential quantifier and could not be
decided by CVC5. If the existentially quantified variable is how-
ever removed, CVC5 can decide the formula. The developer’s
feedback was that they will consider enabling pre-skolemization
by default, i.e. compiling away existential quantifiers. He dele-
gated the issue to one of his fellow developers for fixing.

Discovering a new str.replace rewrite in Z3 (Fig. 10g) This for-
mula contains the term (str.replace "" va "") which is
equivalent to "". Z3 returned unknown for the shown formula,
but correctly decided it as sat after we manually performed this
rewrite step. To fix the issue, the developers added this exact
rewrite step to the string rewriter component of the solver.
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1 (declare -const x Int)

2 (assert (forall

3 ((v Int)) (= v (* x x))))

4 (check -sat)

(a) Incompleteness bug in Z3 caused by faulty MBQI
implementation.
https://github.com/Z3Prover/z3/issues/5376

1 (declare -const T Bool)

2 (declare -const v String)

3 (assert (ite T T true))

4 (assert (or T (and (str.prefixof v "")

5 (exists ((x Int)) (= "t"

6 (str.substr v 0 x))))))

7 (check -sat)

(b) Incompleteness in CVC5 caused by faulty rewrite
precedence rules.
https://github.com/cvc5/cvc5/issues/6717

1 (declare -const x2 Bool)

2 (declare -const x9 Bool)

3 (declare -fun x () Real)

4 (assert (< x (ite (forall

5 ((x Bool)) (ite x x9 x2)) 0.0 1.0)))

6 (check -sat)

(c) Completeness regression in Z3 on formula from a
decidable logic (booleans + linear real arithmetic)
https://github.com/Z3Prover/z3/issues/5340

1 (declare -const P String)

2 (declare -const T String)

3 (assert (=

4 (str.is_digit T)

5 (str.is_digit P)))

6 (check -sat)

(d) Incompleteness bug on string formula in Z3 caused
by unhandled str.is_digit.
https://github.com/Z3Prover/z3/issues/5491

1 (declare -const a Bool)

2 (declare -fun b () Real)

3 (assert (or a (= 0

4 (* b b b))))

5 (assert (> (* b b) 3))

6 (check -sat)

(e) Completeness regression in CVC5’s QF_NRA logic.
https://github.com/cvc5/cvc5/issues/6798

1 (declare -const u Bool)

2 (declare -fun v () String)

3 (assert (exists ((x Int))(or (not (>= 0

4 (str.len (str.substr (str.replace_re ""

5 (str.to_re v) v) x 1)))) u)))

6 (check -sat)

(f) Regression with existential quantifier elimination.
https://github.com/cvc5/cvc5/issues/6727

1 (declare -const x Int)

2 (declare -fun T () Int)

3 (declare -fun va () String)

4 (assert (distinct (str.from_int T)

5 (str.replace va (str.replace ""

6 va "") (str.from_int (- x)))))

7 (check -sat)

(g) Regression bug in Z3which led to new str.replace
rewrite being implemented.
https://github.com/Z3Prover/z3/issues/5399

1 (declare -const s Real)

2 (assert (or (or false (= 0.0 s))

3 (< (* s (+ 6 (* s 12))) (- 1))))

4 (check -sat)

(h) Order sensitivity of or in CVC5 which raised a dis-
cussions among the developers.
https://github.com/cvc5/cvc5-projects/issues/279

Fig. 10: Selected bug samples in Z3 and CVC5.

Regression with quantifier elimination in CVC5 (Fig. 10f).
The formula contains a single existential quantifier and could
not be decided by CVC5. If the existentially quantified variable is
however removed, CVC5 can decide the formula. The developer’s
feedback was that they will consider enabling pre-skolemization
by default, i.e. compiling away existential quantifiers. He dele-
gated the issue to one of his fellow developers for fixing.

Discovering a new str.replace rewrite in Z3 (Fig. 10g) This for-
mula contains the term (str.replace "" va "") which is
equivalent to "". Z3 returned unknown for the shown formula,
but correctly decided it as sat after we manually performed this
rewrite step. To fix the issue, the developers added this exact
rewrite step to the string rewriter component of the solver.

Order sensitivity of or in CVC5 (Fig. 10h). This case showed
the following behavior: The solver result changes from sat to
unknownwhen replacing a subformula fwith the equivalent (or
false f). From a user’s perspective, this is surprising behavior
and one might expect the solver to be robust against such minor
simplifications. Indeed, the solver does simplify (or false f)
to f but this apparently changes the internal order of disjuncts
which triggers the unknown.

"The underlying reason is [...] due to cvc5 being sensitive to
the order of the terms."
"[...] Indeed, false is removed by rewriting as one would expect,
and the unknown is due to the ordering."

After careful analysis, the developers decided that this incom-
pleteness is an acceptable artifact of the solver’s internals. Nev-
ertheless, they kept the issue in a collection of challenges.

Fig. 10: Selected bug samples in Z3 and CVC5.

Order sensitivity of or in CVC5 (Fig. 10h). This case showed the
following behavior: The solver result changes from sat to unknown
when replacing a subformula f with the equivalent (or false
f). From a user’s perspective, this is surprising behavior and
one might expect the solver to be robust against such minor
simplifications. Indeed, the solver does simplify (or false f)
to f but this apparently changes the internal order of disjuncts
which triggers the unknown.

“The underlying reason is [. . .] due to cvc5 being sensi-
tive to the order of the terms."

“[. . .] Indeed, false is removed by rewriting as one would
expect, and the unknown is due to the ordering."

After careful analysis, the developers decided that this incomplete-
ness is an acceptable artifact of the solver’s internals. Nevertheless,
they kept the issue in a collection of challenges.

6 RELATEDWORK
Our approach is particularly related to the prior works on SMT
solver robustness testing [6, 17, 19, 25, 26]. One closely related work
is Bugariu and Müller’s approach [6]. Bugariu and Müller’s formula
synthesizer generates formulas that are by construction satisfiable
or unsatisfiable. However, different from our approach they use
equivalence-preserving rules and their approach is limited to string
formulas. Another closely related work is Sparrow [28]. Similar
to Janus, Sparrow uses over and under-approximation to produce
equisatisfiable mutant formulas by the insertion of randomly syn-
thesized subformulas. Sparrow also tested the SMT solvers Z3 and
CVC5 and reportedly found around 80 bugs in various non-default
configuration combinations and solver modes. The main concep-
tual difference is that mutants produced by Sparrow are less closely
related than Janus’s mutants since Sparrow replaces large terms
within the seed formula. On the other hand, the idea behind Janus’s
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ruleset is to make small incremental changes to the seed formula
that are feasible for the developers to analyze. Unfortunately, Spar-
row is not publicly available and rendering a thorough analysis
of its technical differences from Janus impossible. Different from
both approaches, Janus targets incompleteness bugs in SMT solvers
in their default modes and only finds soundness and crash bugs
as by-products. Janus is also related to SMT solver performance
fuzzing. Lascu et al. [2022] propose a metamorphic approach MF++
for fuzzing C++ libraries. It found 21 new bugs in the four SMT
solver libraries (Z3, CVC5, Yices2, Boolector) and two Presburger
arithmetic libraries (Omega & isl) including several incompleteness
bugs. Blotsky et al. [5] proposed StringFuzz focusing on perfor-
mance issues in string logic. Besides domain-specific approaches,
our approach is related to performance fuzzing. SlowFuzz [20] is an
approach to finding complexity vulnerabilities in sorting and com-
pression algorithms, PerfFuzz [15] is a tool using coverage guidance
to find performance bugs along frequently executed program paths,
and Ga-Proof [22] uses a genetic algorithm to detect performance
bugs with inputs encoded as genes. Different from Janus, these
approaches use runtime differences to identify bugs while Janus
detects bugs based on the standard output of SMT solvers.

7 CONCLUSION
We have introduced Janus, an effective testing tool to uncover in-
completeness bugs in SMT solvers. The key idea is to feed strength-
ened/weakened SMT formulas to the SMT solvers under test to
uncover two types of incompleteness bugs – regressions and im-
plication incompletenesses. We realized Janus on top of the SMT
solver fuzzing tool yinyang. Between June and August 2021 we
have been stress-testing Z3 and CVC5, the state-of-the-art SMT
solvers. We reported 31 incompleteness bugs of which 26 were con-
firmed and 19 fixed by solver developers. Most reports uncovered
functional bugs in the SMT solvers that have not manifested as
soundness or crash bugs. This is the first work introducing and
exclusively targeting incompleteness bugs in SMT solvers. As fu-
ture work, we plan to research ways of detecting incompleteness
bugs beyond regressions and implication incompletenesses. Reduc-
ing and selecting incompleteness bugs for reporting is a slow and
manual process. Hence, we also plan to automate this process.
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