
Validating SMT Solvers via Semantic Fusion
Dominik Winterer∗

Department of Computer Science
ETH Zurich, Switzerland

dominik.winterer@inf.ethz.ch

Chengyu Zhang∗
Software Engineering Institute

East China Normal University, China
dale.chengyu.zhang@gmail.com

Zhendong Su
Department of Computer Science

ETH Zurich, Switzerland
zhendong.su@inf.ethz.ch

Abstract
We introduce Semantic Fusion, a general, effective method-
ology for validating Satisfiability Modulo Theory (SMT)
solvers. Our key idea is to fuse two existing equisatisfiable
(i.e., both satisfiable or unsatisfiable) formulas into a new for-
mula that combines the structures of its ancestors in a novel
manner and preserves the satisfiability by construction. This
fused formula is then used for validating SMT solvers.
We realized Semantic Fusion as YinYang, a practical SMT

solver testing tool. During four months of extensive testing,
YinYang has found 45 confirmed, unique bugs in the default
arithmetic and string solvers of Z3 and CVC4, the two state-
of-the-art SMT solvers. Among these, 41 have already been
fixed by the developers. The majority (29/45) of these bugs
expose critical soundness issues. Our bug reports and testing
effort have been well-appreciated by SMT solver developers.

CCS Concepts: • Software and its engineering → For-
mal methods; Correctness.

Keywords: Semantic fusion, SMT solvers, Fuzz testing

ACM Reference Format:
Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. Vali-
dating SMT Solvers via Semantic Fusion. In Proceedings of the 41st
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI ’20), June 15–20, 2020, London,
UK. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3385412.3385985

1 Introduction
Satisfiability Modulo Theory (SMT) solvers check the satisfia-
bility of first-order logic formulas with functions from differ-
ent theories, such as the booleans, linear and nonlinear arith-
metic, unicode strings, etc. They are important tools for many

∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’20, June 15–20, 2020, London, UK
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00
https://doi.org/10.1145/3385412.3385985

programming languages advances and applications, e.g., sym-
bolic execution [12, 20], program synthesis [31], solver-aided
programming [33], and program verification [16, 17]. SMT
solvers’ satisfiability decisions are critical, and incorrect de-
cisions (i.e., soundness bugs) can invalidate the results of
their client applications.

Z3 [15] and CVC4 [2] are two state-of-the-art SMT solvers
that have been consistently developed for more than ten
years. Researchers and practitioners value their extensive
theory support and trust the SMT solvers’ results. This is
justified since soundness bugs in Z3 and CVC4 are rare, and
both solvers have extensive regression test suites. However,
like any complex software systems, SMT solvers can still
have bugs. In fact, almost all critical SMT solver bugs in Z3
and CVC4 have been uncovered directly by their client appli-
cations. Such bugs frustrate application developers, and can
be catastrophic in safety-critical domains. Besides regression
testing, fuzzing has been used to validate SMT solvers.
In 2009, Brummayer and Biere [7] proposed a grammar-

based fuzzer called FuzzSMT, which found several bugs in
CVC3 (CVC4’s predecessor) and early versions of Z3. Within
the last ten years, SMT solvers have greatly matured, and
finding bugs in them has become more difficult. More recent
efforts on testing SMT solvers by fuzzing [5, 9] have targeted
the unicode string theory and found a few bugs in Z3’s string
solvers. Yet none has targeted other SMT theories nor found
bugs in recent versions of CVC4.

Semantic Fusion. This paper introduces Semantic Fusion,
a general, effective approach to validating SMT solvers. Our
key insight is to fuse two tests into a new test that combines
the structures of its ancestors. We fuse two equisatisfiable
formulas φ1 and φ2 (i.e., both φ1 and φ2 are either satisfiable
or unsatisfiable) into an equisatisfiable formula φfused . Our
approach consists of the following three main steps:

1. Formula Concatenation: Concatenate φ1 and φ2 by for-
mula conjunction or disjunction;

2. Variable Fusion: Create fresh variables to connect the
variable sets of φ1 and φ2 using fusion functions; and

3. Variable Inversion: Substitute some occurrences of the
chosen variables in φ1 and φ2 by inversion functions.

Figure 1 illustrates Semantic Fusion on two satisfiable formu-
las φ1 and φ2. We first concatenate φ1 and φ2, and obtain
φconcat as a result. Then, we introduce a fresh variable z and
a fusion function f (x,y) = x + y, and construct a relation
z = f (x,y), which induces two equations x = z − y and

https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/3385412.3385985

PLDI ’20, June 15–20, 2020, London, UK Dominik Winterer, Chengyu Zhang, and Zhendong Su

φ1 = x > 0 ∧ x > 1
φ2 = y < 0 ∧ y < 1
φconcat = (x > 0 ∧ x > 1) ∧ (y < 0 ∧ y < 1)
φfused = (x > 0 ∧ z − y > 1) ∧ (z − x < 0 ∧ y < 1)

Figure 1. Semantic Fusion on two satisfiable formulasφ1 and
φ2. Variable z realizes the fusion function z = x + y. Shaded:
randomly chosen occurrences of x and y to be replaced by
variable inversion terms: z − y for x and z − x for y.

y = z − x . From these two equations, we obtain two inver-
sion functions rx (y, z) = z − y and ry (x, z) = z − x . Next, we
replace the highlighted occurrences of x and y by the cor-
responding inversion functions rx (y, z) and ry (x, z), which
results in formula φfused . By construction, the formula φfused
is also satisfiable. We feed φfused to the SMT solver under
test and observe the result. If the result is unsat, we have
detected a (soundness) bug in the SMT solver under test.

BugHuntingwithYinYang. Wehave engineered a prac-
tical realization of Semantic Fusion, which we call YinYang.
During only four months of testing, we have used YinYang
to find and report 57 bugs in the default arithmetic and string
solvers of Z3 and CVC4. Out of these, 45 were confirmed and
41 were fixed by the developers. We have found 29 bugs that
expose soundness issues, the most critical type of bugs in
SMT solvers. YinYang found 24 such soundness bugs in Z3
in multiple logics. It found more than 2/3 of all soundness
bugs in the nonlinear logic in Z3 since 2015, and around 1/3
of all soundness bugs in its string logics. In CVC4, YinYang
detected 5 soundness bugs; 4 were labeled “major” by the
CVC4 developers — there were only 9 other such bugs in
CVC4’s bug tracker. To the best of our knowledge, none of
the previous approaches has ever found a soundness bug in
CVC4. The SMT solver developers appreciated our testing
effort and bug reports, and specifically commented "great
find!", "excellent find!", "nice catch!", etc.

Main Contributions.
• We introduce Semantic Fusion, a novel, general, prin-
cipled methodology for stress-testing SMT solvers;
• Based on the Semantic Fusionmethodology, we design
and develop the first highly effective tool, YinYang, for
SMT solver validation — the tool is customizable and
conveniently supports various SMT theories;
• We conduct a four-month extensive testing of Z3 and
CVC4 using YinYang to demonstrate its effectiveness —
we have found and reported a total of 57 bugs with 45
confirmed and 41 fixed in their default arithmetic and
string solvers, the largest and most successful testing
campaign against modern SMT solvers; and
• We present several in-depth evaluations to understand
YinYang’s effectiveness in terms of improved code cov-
erage and with respect to a survey of the historic bugs
in the SMT solvers Z3 and CVC4.

; phi1

(declare-fun x () Int)

(declare-fun w () Bool)

(assert (= x (- 1)))

(assert (= w (= x (- 1))))

(assert w)

; phi2

(declare-fun y () Int)

(declare-fun v () Bool)

(assert (= v (not (= y (- 1)))))

(assert (ite v false (= y (- 1))))

Figure 2. Formulasφ1 andφ2 in the SMT-LIB format. Shaded:
variables to be replaced by inversion function terms.

Paper Organization. The rest of the paper is structured
as follows. Section 2 illustrates the high-level idea behind
Semantic Fusion via two examples. Section 3 formalizes our
Semantic Fusion approach and describes the implementation
of YinYang. Next, we give details on our extensive evaluation
(Section 4) and show sampled bugs to highlight the diverse
types of bugs that YinYang can find (Section 4.3). Finally, we
survey related work (Section 5) and conclude (Section 6).

2 Illustrative Examples
This section illustrates two instantiations of Semantic Fusion:
(1) SAT fusion fuses a pair of satisfiable formulas into a satis-
fiable formula, and, similarly, (2) UNSAT fusion fuses a pair
of unsatisfiable formulas into an unsatisfiable formula.

SMT-LIB Language. The SMT-LIB language is the cur-
rent standard input language for SMT solvers [4]. We fo-
cus on the following statements of the SMT-LIB language:
declare-fun, declare-const, define-fun, assert, check-sat.
Variables are declared as zero-valued functions. For example,
the statement "(declare-fun a () Real)" declares a variable
of type real. An assert statement specifies constraints. The
predicates within the asserts can be of mixed types, e.g., the
assert "(assert (<= (/ x 4) (* 5 x)))" includes predicates of
real and boolean types. Operations are specified in the prefix
notation. Multiple asserts can be viewed as the conjunction
of the constraints in each individual assert statement. The
check-sat statement queries the solver to decide on the sat-
isfiability of a formula. If all constraints are satisfied, the
formula is satisfiable; otherwise, the formula is unsatisfiable.

2.1 SAT Fusion
SAT fusion combines two satisfiable formulas into a satisfi-
able formula. SAT fusion can be described by the following
steps: (1) Formula Conjunction, (2) Variable Fusion, and (3)
Variable Inversion. Consider the formulas φ1 and φ2 in Fig-
ure 2. The SMT-LIB code represents the following formulas:

φ1 ≡ (x = −1) ∧ (w = (x = −1)) ∧w
φ2 ≡ (v = (y , −1)) ∧ (v → false) ∧ (¬v → (y = −1))

Validating SMT Solvers via Semantic Fusion PLDI ’20, June 15–20, 2020, London, UK

(declare-fun v () Bool)

(declare-fun w () Bool)

(declare-fun x () Int)

(declare-fun y () Int)

(declare-fun z () Int)

; phi1 part

(assert (= (div z y) (- 1)))

(assert (= w (= x (- 1)))) (assert w)

; phi2 part

(assert (= v (not (= y (- 1)))))

(assert (ite v false (= (div z x) (- 1))))

Figure 3. Fused formula φsat in the SMT-LIB format. It trig-
gered a soundness bug in CVC4.
https://github.com/CVC4/CVC4/issues/3413

Formulaφ1 is satisfiable since assigning x = −1 andw = true
satisfies both conjuncts. Formula φ2 is also satisfiable since
we can set y to −1 and v to false, which satisfies the formula.
In the following, we describe steps 1-3 in detail.
Step 1: Formula Conjunction: We conjoin formulaφ1 with

formula φ2 and obtain φ1 ∧φ2 as a result. In the SMT-LIB
format, this conjunction can be carried out by simply
merging the variable declaration and assert blocks.

Step 2: Variable Fusion: We introduce a fresh variable z
to fuse the integer variable pairs x in φ1 and y in φ2. We
define a fusion function: f (x,y) = x · y and construct an
equation z = f (x,y). The choice of the fusion function
f is determined by the type of the fused variables (cf.
Section 3). We fuse the occurrences of variables x and y.

Step 3: Variable Inversion: We dissolve the equation z =
f (x,y) to rx (y, z) = z div y and ry (x, z) = z div x , where
rx and ry are called inversion functions and div denotes
integer division. The purpose of the inversion functions
is to recover the original values of x and y. The inversion
function rx (y, z), for example, recovers x by a term that
only depends on y and z. We then randomly replace free
occurrences of x by rx (y, z) and free occurrences of y by
ry (x, z). The formula φsat is by construction satisfiable.
The SMT-LIB code of φsat is shown in Figure 3.
Why is φsat satisfiable? Intuitively, because we can con-

struct a model for φsat from models for φ1 and φ2. Let M1
be a model for φ1 and M2 be a model for φ2. We construct
M for φsat with M = M1 ∪M2 ∪ {z 7→ M1(x) · M2(y)} (see
Section 3 for details). Formula φsat in Figure 3 is a real case.
It triggered a soundness bug in CVC4, which made CVC4
incorrectly report unsat on φsat . We reported this issue to
the GitHub CVC4’s issue tracker. As per the developers, this
was a regression introduced by recent code changes, and
they promptly fixed the bug.

2.2 UNSAT Fusion
UNSAT fusion combines two unsatisfiable formulas into an
unsatisfiable formula. We describe the idea behind UNSAT

; phi3

(declare-fun x () Real)

(assert (not (= (+ (+ 1.0 x) 6.0) (+ 7.0 x))))

; phi4

(declare-fun y () Real)

(declare-fun w () Real)

(declare-fun v () Real)

(assert (and (< y v) (>= w v)

(< (/ w v) 0) (> y 0)))

Figure 4. Formulasφ3 andφ4 in the SMT-LIB format. Shaded:
variables to be replaced by inversion function terms.

(declare-fun v () Real)

(declare-fun w () Real)

(declare-fun x () Real)

(declare-fun y () Real)

(declare-fun z () Real)

(assert (or
; phi3 part

(not (= (+ (+ 1.0 (/ z y)) 6.0) (+ 7.0 x)))

; phi4 part

(and (< (/ z x) v) (>= w v)

(< (/ w v) 0) (> (/ z x) 0))))

; fusion constraints

(assert (= z (* x y)))

(assert (= x (/ z y)))

(assert (= y (/ z x)))

Figure 5. Fused formula φunsat of φ3 and φ4 that triggered a
soundness bug in Z3.
https://github.com/Z3Prover/z3/issues/2391

fusion in four steps: (1) Formula Disjunction, (2) Variable
Fusion, (3) Variable Inversion, and (4) Adding Fusion Con-
straints. While steps (1), (2) and (3) are similar as those in
SAT fusion, UNSAT fusion needs an additional fourth step
to ensure the unsatisfiability of the fused formula.

Consider the formulas φ3 and φ4 in Figure 4:

φ3 = ((1.0 + x) + 6.0) , (7.0 + x)
φ4 = (0 < y < v ≤ w) ∧ (w/v < 0)

Formula φ3 is trivially unsatisfiable. Formula φ4 is unsatisfi-
able, since the left part of the conjunction requires bothw
and v to be non-negative but the right part requiresw and
v to be of opposite signs. First, we disjoin the two formu-
las. We then again choose a pair of free variables in each
formula, e.g., variable x in φ1 and variable y in φ2, and intro-
duce a fresh variable z and fusion function f (x,y) = x · y
with z = f (x,y). We dissolve the equation z = f (x,y) to
inversion functions rx (y, z) = z/y and ry (x, z) = z/x , and
randomly substitute the first occurrence of x by rx (y, z) and
both occurrences of y by ry (x, z).
Step 4: Add Fusion Constraints: We add z = f (x,y), x =

rx (y, z) and y = ry (x, z) to the fused formula. We call
them fusion constraints. Since random substitutions may

https://github.com/CVC4/CVC4/issues/3413
https://github.com/Z3Prover/z3/issues/2391

PLDI ’20, June 15–20, 2020, London, UK Dominik Winterer, Chengyu Zhang, and Zhendong Su

render the fused formula satisfiable, we need the fusion
constraints to ensure that rx and ry recover x and y (see
Section 3 details). The SMT-LIB code of the resulting
fused formula is shown in Figure 5.

The fused formula φunsat in Figure 5 has triggered a sound-
ness bug in Z3, i.e., Z3 reports sat on φunsat , which is in-
correct since the formula is unsatisfiable by construction.
This bug is only triggered by the fused formula; it cannot
be triggered by either of the seed formulas nor by the dis-
junction/conjunction of the two seed formulas φ3 and φ4.

3 Approach
This section presents Semantic Fusion and how we apply it
to stress-testing SMT solvers. We propose two approaches,
SAT Fusion and UNSAT Fusion, and prove their correctness.
We describe our tool YinYang, a practical implementation of
SAT Fusion and UNSAT Fusion.

3.1 Definitions
We consider first-order logic formulas of the satisfiability
modulo theories (SMT). For such a formula φ, we denote
the set of free variables by vars(φ). A substitution of a vari-
able x ∈ vars(φ) by an expression e is denoted by φ[e/x].
A model M for φ is a function that maps all free variables
x1, · · · xn ∈ vars(φ) to values in their respective domains
such that φ[M(x1)/x1, · · · ,M(xn)/xn] simplifies to true. The
model count of a formula φ is C(φ) = |{M | M |= φ}|. For-
mula φ is satisfiable if C(φ) ≥ 1 and unsatisfiable other-
wise. φ[e/x]R denotes the formula where some of the occur-
rences of x (possibly none) in φ are replaced by e . It holds
C(φ[e/x]) ≤ C(φ[e/x]R).

3.2 Semantic Fusion
The insight of Semantic Fusion is to combine two seed tests
into a new test that fuses the structures of its ancestors.
Applying this to two formulasφ1 andφ2 of same satisfiability,
we fabricate a fused formula φfused that is equisatisfiable.

Definition 1 (Fusion function). Let φ1, φ2 be formulas, x ∈
vars(φ1), and y ∈ vars(φ2). Let z be a fresh variable z <
vars(φ1) ∪vars(φ2). We define

z := f (x,y)

Function f is called a Fusion function.

Having defined fusion function, we next invent inversion
functions to recover the original values for x and y.

Definition 2 (Inversion function). Letφ1 andφ2 be formulas
and f be a fusion function. For x ∈ vars(φ1), y ∈ vars(φ2)

and z = f (x,y), we define

x = rx (y, z) y = ry (x, z)

functions rx and ry are called Inversion functions.

As an example, consider the fusion function f (x,y) =
x + y. The corresponding inversion functions for x and y
are: rx (y, z) = z − y, and ry (x, z) = z − x . We next present a
proposition that shows how we fuse two satisfiable formulas
into an equisatisfiable formula.

Proposition 1 (SAT fusion). Let φ1,φ2 be satisfiable formu-
las with vars(φ1) ∩ vars(φ2) = ∅. Let further x ∈ vars(φ1)

y ∈ vars(φ2) be variables. Then, the formula

φsat = φ1[rx (y, z)/x]R ∧ φ2[ry (x, z)/y]R

is satisfiable.

Proof. LetM1 andM2 be models for φ1 and φ2, respectively.
We construct a modelM for φsat as follows:

M(v) = M1(v), for v ∈ vars(φ1)

M(v) = M2(v), for v ∈ vars(φ2)

M(z) = f (M1(x),M2(y))

Since x = rx (y, z) by Definition 2,M(x) = M(rx (y, z)). Thus,
M(φ1[rx (y, z)/x]R) = M(φ1) via structural induction. ByM ’s
construction, M(φ1) = M1(φ1), thus M |= φ1[rx (y, z)/x]R .
Similarly,M |= φ2[ry (x, z)/y]R), and henceM |= φsat . □

Proposition 1 enables us to fuse two satisfiable formulas
and obtain a satisfiable formula as a result.Wewould also like
to fuse unsatisfiable formulas into an unsatisfiable formula.
However, we cannot simply fuse two unsatisfiable formulas
using Proposition 1 as the following counterexample shows.
Consider the unsatisfiable formulas φ1 = x > 0 ∧ x < 0,
φ2 = y , y, and the fusion function z = x +y. If we replace
the shaded occurrence of x by y − z and y by x − z, we get
the following formula: (x > 0) ∧ (z − y < 0) ∧ (z − x , y).
This is a satisfiable formula, e.g., any assignments for x ,y and
z that satisfy x > 0 and y > z realize a model. The problem
here is that we can freely choose z that does not necessarily
preserve z = f (x,y). To prevent this, we add the constraint
z = f (x,y) to the formula. For fusing unsatisfiable formulas,
we disjoin the formulas, since this is likely to increase the
effort of SMT solvers to prove the formula unsatisfiable.

Proposition 2 (UNSAT fusion). Let φ1,φ2 be unsatisfiable
formulas with vars(φ1) ∩ vars(φ2) = ∅. Let further x ∈
vars(φ1), y ∈ vars(φ2) be variables. Then, the formula

φunsat = (φ1[rx (y, z)/x]R ∨ φ2[ry (x, z)/y]R) ∧ z = f (x,y)

is unsatisfiable.

Proof. Assume the contrary, i.e., φunsat were satisfiable. Then
either (or both) of the following would be satisfiable:

φ1[rx (y, z)/x]R ∧ z = f (x,y)

φ2[ry (x, z)/y]R ∧ z = f (x,y)

Say φ1[rx (y, z)/x]R ∧ z = f (x,y) were satisfiable. The for-
mula φ1[rx (y, z)/x]R ∧ z = f (x,y) is equivalent to the for-
mula φ1[rx (y, z)/x]R [f (x,y)/z] ∧ z = f (x,y), which, by Def-
inition 2, is equivalent to φ1 ∧ z = f (x,y). This contradicts

Validating SMT Solvers via Semantic Fusion PLDI ’20, June 15–20, 2020, London, UK

Type Fusion Function Variable Inversion Functions

rx ry

Int x + y
x + c + y
x ∗ y
c1 ∗ x + c2 ∗ y + c3

z − y
z − c − y
z div y
(z − c2 ∗ y − c3) div c1

z − x
z − c − x
z div x
(z − c1 ∗ x − c3) div c2

Real x + y
x + c + y
x ∗ y
c1 ∗ x + c2 ∗ y + c3

z − y
z − c − y
z/y
(z − c2 ∗ y − c3)/c1

z − x
z − c − x
z/x
(z − c1 ∗ x − c3)/c2

String x str++ y
x str++ y
x str++ c str++ y

str .substr z 0 (str .len x)
str .substr z 0 (str .len x)
str .substr z 0 (str .len x)

str .substr z (str .len x) (str .len y)
str .replace z x ""
str .replace (str .replace z x "") c ""

Figure 6. Variable fusion functions with their corresponding variable inversion functions categorized by types Int, Real and
String. The coefficients c1, · · · , c3 are randomly chosen, and div denotes integer division.

the assumption, i.e., the unsatisfiability of φ1. The case for
φ2[ry (x, z)/y]R ∧ z = f (x,y) is symmetric. □

Proposition 2 enables us to fuse two unsatisfiable formu-
las into an unsatisfiable formula and complements Proposi-
tion 1. We could also apply fusion to mixed formula pairs,
i.e., when φ1 is satisfiable and φ2 is unsatisfiable. We can
use φ1[rx (y, z)/x] ∨ φ2[ry (x, z)/y] for a satisfiable fused for-
mula and φ1[rx (x, z)/x] ∧ φ2[ry (x, z)/y] ∧ z = д(x,y) for an
unsatisfiable fused formula.

3.3 Fusion and Inversion Functions
We now give exemplary fusion and inversion functions (see
Figure 6) and explain the intuitions behind them. Let us
consider the Int and Real categories. The first two fusion
and inversion functions in these categories are based on
addition/subtraction and multiplication/division. When di-
vision and multiplication of variables are used as function
and inversion functions, a formula in linear logic might be-
come non-linear. This is because we replace free variables
occurrences by variable inversion functions that include the
division operator. Another inversion function for real and
integer arithmetic is c1 ∗ x + c2 ∗ y + c3. The intuition be-
hind c1 ∗ x + c2 ∗y + c3 is to synthesize arbitrary polynomial
combinations of the variables x and y since c1, · · · , c3 are
random coefficients. Let us consider Strings next. In the first
row of the String category, we define z as the concatenation
of the two strings x and y. Say x = "foo" and y = "bar", then
z = x str++ y = "foobar". We retrieve x by the substring
of z from 0 to |x |, for y the substring from |y | to the end of
z. Another way to retrieve y is to use the replace function
instead of substring. The expression str .replace z x "" denotes
the replacement of the first occurence of x in z by the empty
string "", which results in "bar".

In addition, we can insert a random string c into x str++ y
by x str++ c str++ y to make the fusion function more com-
plex, and then retrieve y by replacing x and c with "" sequen-
tially. We emphasize that Semantic Fusion is not restricted
to these fusion and inversion functions of Figure 6. A richer
set of fusion and inversion functions can be designed based
on the generic Definitions 1 and 2.

3.4 YinYang
Based on Semantic Fusion, we have designed and engineered
the bug detection tool YinYang to stress-test SMT solvers.

Algorithm. Algorithm 1 presents a parameterized algo-
rithm of YinYang. The main procedure takes the oracle of
the seed formulas o ∈ {sat, unsat}, SMT solver under test
S , and a set of seed formulas Φo as input. Each of the seeds
in Φo has the same satisfiability as the oracle o (either all
sat or all unsat). The sets of incorrects and crashes are sets
for collecting soundness and crash bugs, respectively, and
are both initialized to the empty set. The while loop body is
executed until a termination criterion is met, e.g., a timeout
or an interrupt by the user (Line 3). We first randomly choose
two formulas φ1,φ2 from Φo and pass them to the fuse func-
tion together with the oracle o. The fuse function returns
the fused formula φfused (Line 6). Then, we check whether
the SMT solver S has crashed on solving φfused . If so, we have
found a crash bug and will add φfused to crashes. Otherwise, if
S does not crash, we check whether S(φfused) is inconsistent
with the oracle o (Line 9). If so, we have observed a soundness
issue and will add φfused to the set incorrects.
Algorithm 2 presents the implementation of the fuse

function. It takes two seed formulas φ1 and φ2 as input
and retrieves the sets of their free variables vars(φ1) and
vars(φ2), respectively. Then, we create random tripletsT , for
(z, x,y) ∈ T where x ∈ vars(φ1) and y ∈ vars(φ2), and z

PLDI ’20, June 15–20, 2020, London, UK Dominik Winterer, Chengyu Zhang, and Zhendong Su

Algorithm 1: YinYang’s main process
1 Procedure YinYang (o, S , Φo):
2 incorrects← ∅, crashes← ∅
3 while no termination criterion met do
4 φ1 ← random.choice(Φo)

5 φ2 ← random.choice(Φo)

6 φfused ← fuse(o, φ1, φ2)

7 if S(φfused) = crash then
8 crashes← crashes ∪ {φfused}

9 else if S(φfused) , o then
10 incorrects← incorrects ∪ {φfused}

Algorithm 2: Semantic Fusion on two SMT formulas
1 Function fuse(o, φ1, φ2):
2 vars(φ1) ← free_variables(φ1)

3 vars(φ2) ← free_variables(φ2)

4 T ← random_map (vars(φ1), vars(φ2))
5 φ ′1, φ

′
2 ← variable_fusion (T , φ1, φ2)

6 if o = sat then
7 return φ ′1 ∧ φ

′
2

8 else
9 φ ′← φ ′1 ∨ φ

′
2

10 foreach (z, x,y) ∈ T do
11 φ ′← φ ′ ∧ z = f (x,y)

12 return φ ′

13 Function variable_fusion(T , φ1, φ2):
14 φ ′1 ← φ1, φ ′2 ← φ2
15 foreach (z, x,y) ∈ T do
16 φ ′1 ← φ ′1[rx (y, z)/x]R
17 φ ′2 ← φ ′2[ry (x, z)/y]R

18 return φ ′1,φ
′
2

is the fresh variable. In the variable_fusion function, we
substitute randomly chosen occurrences of x in φ1 and y in
φ2 by the inversion function terms rx (y, z) and ry (x, z) from
Table 6. If oracle o is sat , we perform SAT fusion (Propo-
sition 1) and return the conjunction of φ ′1 and φ ′2 directly
(Line 7). If oracle o is unsat, we perform UNSAT fusion, i.e.,
we disjoin φ ′1 and φ ′2, and add a fusion constraint for each
triplet (x,y, z) ∈ T (Lines 9-11) and return the result.

In principle, YinYang guarantees the absence of false pos-
itives, given that the seed formulas Φo are correctly labeled.
In practice, the solvers may report unknown, which could be
either seen as a crash or ignored.

Implementation ofYinYang. We implemented YinYang
in a total of 1, 032 lines of Python 3.7 code. YinYang is able

Benchmark #UNSAT #SAT Total

LIA 203 139 342
LRA 1,316 714 2,030
NRA 3,798 - 3,798
QF_LIA 1,191 1,318 2,509
QF_LRA 384 522 906
QF_NRA 4,660 4,751 9,411
QF_SLIA 5,492 22,657 28,149
QF_S 6,390 12,561 18,951
StringFuzz 4,903 4,098 9,001

Figure 7. The formula counts of the respective benchmarks.

to run in multiple-threaded mode, which significantly in-
creases its throughput. Users can customize the command-
line interface of YinYang for customized SMT solvers and/or
features. YinYang accepts SMT solver binaries as test tar-
gets and obtains the solving results from the stdout stream,
which makes YinYang compatible with most SMT solvers. A
lightweight SMT-LIB v2 parser is implemented for getting
free variables and assertions. The formula concatenation and
variable substitution are implemented by string operations,
which makes YinYang compatible to most of the formulas
without additional implementation. When there are multiple
fusion/inversion functions choices for f , rx and ry , YinYang
makes a random choice.

4 Empirical Evaluation
This section presents the details of our extensive evalua-
tion of YinYang, demonstrating the practical effectiveness
of the Semantic Fusion methodology. Between June and Oc-
tober 2019, we ran YinYang to test the default arithmetic
and string solvers of Z3 and CVC4. We chose Z3 and CVC4
since they (1) are popular and widely-used in academia and
industry, (2) support a rich set of logics, and (3) adopt an
open-source development model. During our testing period,
we filed numerous bugs on their GitHub issue trackers. This
section describes the outcome of our testing effort.

Result Summary and Highlights.
• Many confirmed bugs: In four months, YinYang found
45 unique bugs in Z3 and CVC4. Out of these, 41 were
already fixed by the developers.
• Many soundness bugs: YinYang found 24 soundness
bugs in Z3 and 5 in CVC4. These represent 16% of the
reported Z3 soundness bugs of the last five years and
11% of the reported CVC4 soundness bugs of the last
nine years. Some of the bugs affect multiple historical
release versions.
• Bugs in various logics: YinYang found bugs in various
logics, e.g., QF_NRA, QF_NIA, NRA, NIA, QF_S, and
QF_SLIA. Most of the bugs in Z3 were found in NRA
(15) and QF_S (15), while most of the bugs in CVC4
were found in QF_S (4).

Validating SMT Solvers via Semantic Fusion PLDI ’20, June 15–20, 2020, London, UK

Status Z3 CVC4 Total

Reported 44 13 57
Confirmed 37 8 45
Fixed 35 6 41
Duplicate 4 1 5
Won’t fix 2 0 2

(a)

Type Z3 CVC4 Total

Soundness 24 5 29
Crash 11 1 12
Performance 1 2 3
Unknown 1 0 1

(b)

Logic Z3 CVC4 Total

NIA 2 1 3
NRA 15 1 16
QF_NIA 0 1 1
QF_NRA 2 0 2
QF_S 15 4 19
QF_SLIA 3 1 4

(c)

Figure 8. (a) Status of the reported bugs in Z3 and CVC4, (b) Types of the confirmed bugs in Z3 and CVC4, and (c) Affected
SMT logics of the confirmed bugs in Z3 and CVC4.

4.1 Evaluation Setup
Hardware Setup. Since July 2019, YinYang tested Z3 and

CVC4 on three machines. The first machine is equipped with
an Intel Xeon CPU E5-2680 28-core processor and 256GB
RAM. The second machine is equipped with an Intel Core
i7-8700 6-core processor and 16GB RAM. The third machine
has an AMD Ryzen Threadripper 2990WX processor with
32 cores and 32GB RAM. The operating system on all three
machines is Ubuntu 18.04 64-bit.

Test Seed Formulas. Figure 7 shows the formula counts
of the respective benchmarks that we used. The majority of
the seed formulas come from the SMT-LIB benchmark suite
maintained by the SMT-LIB Initiative [3]. We chose the SMT-
LIB benchmarks as our test seeds since they make the largest
collection of SMT formulas in the SMT-LIB 2.6 language [4].
The SMT-LIB benchmarks are also used in the SMT Compe-
tition [14]. Therefore, these formulas are unlikely to trigger
bugs in Z3 and CVC4 since they have already been run on
them. This helps us isolate the effects of Semantic Fusion.
We choose the following logics: LIA, LRA, NRA, QF_LIA,
QF_LRA, QF_NRA, QF_SLIA, and QF_S. L represents linear,
N represents non-linear, IA represents integer arithmetic,
RA represents real arithmetic, QF represents quantifier-free,
and S represents string logic.

Besides the SMT-LIB benchmarks, we also used the bench-
marks from StringFuzz [19]. The formulas from the String-
Fuzz benchmarks are the in QF_S logic and in the SMT-LIB
2.6 language. They do not trigger any bugs in the latest ver-
sions of Z3 and CVC4. We preprocessed all formulas (from
the SMT-LIB benchmarks and StringFuzz) with Z3 to sub-
divide them into a satisfiable and an unsatisfiable set. We
cross-checked with CVC4 to ensure the correctness of these
ground truths. In total, we obtained 75, 097 seed formulas,
46, 760 of which are satisfiable and 28, 337 are unsatisfiable.

SMT Solvers. We selected the SMT solvers Z3 and CVC4
for the evaluation of YinYang. We chose them because:

• Z3 (5, 196 stars on GitHub) and CVC4 (361 stars on
GitHub) are the two most popular SMT solvers. They
are mature and widely-used in academia and industry.

• Z3 and CVC4 have state-of-the-art performance. Both
regularly rank high in the annual SMT competitions [14].
• Z3 and CVC4 support most of the features and logics
in the SMT-LIB standard, while the other SMT solvers
only partially support the SMT-LIB standard.
• Z3 andCVC4 have open source issue trackers onGitHub,
and their developers are active and responsive. This
helps our testing effort as we can quickly get feedback
on our bug reports, and filed bugs are fixed promptly.

For CVC4, we use its –strings-exp option to enable sup-
port for the string logic and default configuration for the
other logics. For Z3, we use smt.string_solver=z3str3,
its default configuration for string logic, and default config-
uration for the other logics. We compiled both solvers with
assertions enabled.

Bug Reduction. When a bug is found, we need to reduce
the fused formula to a small enough size for reporting.We use
C-Reduce [29], a C code reduction tool, which also works for
the SMT-LIB language. We implemented a pretty printer to
help with the bug reduction process, i.e., when C-Reduce has
converged to a still very large formula or hangs. The pretty-
printer makes simple modifications to the AST of a formula,
i.e., flattens nestings of the same operator, removes additions
and multiplications with neutral elements and returns the
modified formula in a human-readable format.

4.2 Quantitative Evaluation
We guide our quantitative evaluation by four consecutive
research questions.

RQ1: How many bugs can YinYang find?
From July 2019 to October 2019, we extensively tested Z3
and CVC4 with YinYang. YinYang usually reports many bug-
triggering test cases in one testing round. To avoid duplicate
bug reports, we always use the trunk versions of the solvers
for testing. Once the developers have fixed a bug, we val-
idate the fixed version on the rest of the formulas which
triggered bugs in the previous testing round. If the solvers
passed all formulas and no bug was triggered, we started
a new testing round. During our four months of testing,
YinYang generated around 800 million test formulas. On

PLDI ’20, June 15–20, 2020, London, UK Dominik Winterer, Chengyu Zhang, and Zhendong Su

average, YinYang generates 41.5 test formulas per second
when run in the single-threaded mode. Figure 8a shows the
bug counts categorized by reported, confirmed, fixed, du-
plicate and won’t fix. From the 57 reported bugs, 45 bugs
were confirmed by the developers as real bugs and 41 bugs
were fixed. Although we devoted equal testing effort to both
solvers, YinYang found more bugs in Z3 (37 confirmed bugs)
and clearly fewer bugs in CVC4 (8 confirmed bugs). Having
observed that YinYang can find a significant number of bugs
in Z3 and CVC4, Figure 8b shows the bug type overview of
YinYang’s findings. For bug reporting, we distinguish the
following three types of bugs:

• Soundness bugs: A formula triggers a soundness bug if
the solver reports an incorrect solving result.
• Crash bugs: A formula triggers a crash bug if the solver
terminates abnormally or throws internal errors while
processing the formula.
• Performance and unknown bugs: A formula triggers a
performance bug if the solver reports unknown or can-
not terminate on a simple formula and the developers
confirm implementation issues.

Overall, the most common bug category is for soundness
bugs (29 out of the 57 reported bugs) followed by crash bugs
(12 out of the 57 reported bugs). This is consistent for both
solvers, which shows the strength of YinYang in finding
soundness bugs. Although we designed YinYang to target
soundness and crash bugs, we also considered performance
bugs. We have found these bugs during the reduction pro-
cess of C-Reduce. As performance bugs are less interesting
than soundness and crash bugs, we stopped reporting per-
formance bugs after several bug reports and solely focused
on soundness and crash bugs subsequently. Figure 8c shows
the logic distribution among the confirmed bugs. In Z3, we
found most of the bugs in NRA (15) followed by QF_S (15),
QF_SLIA (3), NIA (2) and QF_NRA (2). In CVC4, we found
most of the bugs in QF_S (4).

RQ2: How significant are the bug-finding results?
To approach this question, we consider the most critical bugs
in SMT solvers, i.e., the soundness bugs. Soundness bugs in
SMT solvers are rare and heavily penalized when detected
in the SMT competitions [14]. We have conducted a study
on soundness bugs based on the GitHub issue trackers of
Z3 and CVC4. The results are shown in Figure 9. For Z3, we
considered April 2015 as the start date, right after Z3 was
released on GitHub. For CVC4, we have data since July 2010
as CVC4’s previous Bugzilla issue tracker was migrated to
GitHub. Z3 supports a myriad of logics and has become very
popular on GitHub (5, 196 stars). However, there were only
146 soundness bugs reported on the Z3 issue tracker from
April 2015 to October 2019. For CVC4 this number is even
lower. Since July 2010, there were only 42 soundness bugs.
Of all the soundness bugs in Z3, we found 24 out of 146

20
15

20
16

20
17

20
18

20
19

63

28
221815

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

2

9

1

9

3
1 2

13

Figure 9. Number of soundness bugs in Z3 (left) and CVC4
(right) per year.

4.5
.0

4.6
.0

4.7
.1

4.8
.1

4.8
.3

4.8
.4

4.8
.5

tru
nk

8
5 5 5 5

8 10

24

1.5 1.6 1.7

tru
nk

2
1

2

5

Figure 10. Number of found soundness bugs that affect cor-
responding release versions of Z3 (left) and CVC4 (right).

(16%). For CVC4, we found 5 soundness bugs out of 43 (11%)
in only four months. We found 18 out of the 25 soundness
bugs in non-linear logics in Z3 since 2015 and 15 out of the
53 soundness bugs in its string logic. As an intermediate
conclusion to RQ2, we state that YinYang has found a signifi-
cant number of the soundness bugs in both Z3 and CVC4. To
more deeply understand the significance of our soundness
bug findings, we studied the influence of soundness bugs
in different releases of Z3 and CVC4. Figure 10 shows the
results. We selected all released versions of Z3 and CVC4 that
support the formulas triggering soundness bugs. Z3 4.5.0 was
released on November 8, 2016, and CVC4 1.5 was released on
July 10, 2017, which means that YinYang found 8 soundness
bugs in Z3 that were latent for 3 years, and 2 soundness bugs
in CVC4 that were latent for 2 years. YinYang has found
long-latent bugs missed by solver developers, users, regres-
sion testing, and prior automated testing. This confirms the
significance of our bug findings.

RQ3: Can YinYang improve code coverage?
In this research question, we use code coverage, a stan-
dard evaluation metric for software testing, to understand
whether YinYang can cover additional code inside the SMT
solvers. To investigate the coverage improvement ofYinYang,
we consider the following steps:

1. Run Z3 and CVC4 on all formulas in each benchmark.
2. Measure the line, function, and branch coverage of the

solvers. The results are labeled as Benchmark.
3. After running Z3 and CVC4 on each benchmark, run

YinYang for one hour in single-threaded mode on each
benchmark.

4. Measure the line, function, and branch coverage of the
solvers. The results are labeled as YinYang.

Validating SMT Solvers via Semantic Fusion PLDI ’20, June 15–20, 2020, London, UK

LIA LRA NRA
SAT UNSAT SAT UNSAT SAT UNSAT

l f b l f b l f b l f b l f b l f b
Z3 Benchmark 10.6 14.6 3.4 9.4 13.2 2.8 10.4 14.5 3.3 9.8 13.8 3.1 - - - 10.6 13.1 3.5

YinYang 12.0 16.7 3.8 14.5 18.6 4.9 13.4 17.3 4.3 13.3 16.8 4.3 - - - 11.9 14.8 3.9

CVC4 Benchmark 14.7 29.1 5.4 15.3 28.9 6.0 14.2 27.3 5.3 12.8 24.9 4.6 - - - 16.0 30.9 6.2
YinYang 16.4 31.4 6.2 17.5 31.9 7.2 16.1 30.6 6.4 15.7 29.4 6.2 - - - 17.9 33.9 7.2

QF_LIA QF_LRA QF_NRA
SAT UNSAT SAT UNSAT SAT UNSAT

l f b l f b l f b l f b l f b l f b
Z3 Benchmark 11.5 16.3 3.7 13.3 17.6 4.3 7.8 12.6 2.6 7.3 11.1 2.4 12.0 13.5 4.6 11.3 13.0 4.1

YinYang 14.8 19.8 5.1 16.1 20.6 5.5 14.7 18.7 5.2 14.3 17.8 5.2 13.4 15.3 5.1 12.5 14.5 4.6

CVC4 Benchmark 11.0 20.2 3.5 11.6 20.2 3.8 10.7 19.9 3.3 10.6 19.6 3.4 12.8 22.6 4.7 13.4 22.6 5.0
YinYang 12.7 23.8 4.4 12.3 20.9 4.1 13.7 27.2 5.1 12.9 25.6 4.6 15.2 28.7 5.8 15.7 27.8 6.2

QF_SLIA QF_S StringFuzz
SAT UNSAT SAT UNSAT SAT UNSAT

l f b l f b l f b l f b l f b l f b
Z3 Benchmark 10.2 15.2 3.4 11.5 15.4 4.0 12.5 17.7 4.3 11.8 16.2 4.0 13.4 18.3 4.6 12.7 17.5 4.2

YinYang 10.4 15.5 3.5 13.1 16.9 4.7 12.6 17.8 4.3 12.8 17.0 4.4 13.7 18.4 4.8 13.6 18.3 4.7

CVC4 Benchmark 15.2 25.3 6.8 18.4 32.6 7.4 16.2 28.6 6.5 14.5 26.2 5.6 19.6 36.3 8.2 20.3 35.9 9.1
YinYang 16.2 26.5 7.3 19.6 34.0 8.0 16.6 29.9 6.7 14.8 26.3 5.9 20.0 36.6 8.5 20.8 36.2 9.5

Figure 11. Code coverage evaluations. The numbers represent the percentage (%) coverage for the corresponding coverage
metric. Column l, f, b represent line coverage, function coverage, and branch coverage respectively. Higher coverage between
Benchmark and YinYang is shaded.

The timeout for the solvers is set to two seconds. For mea-
suring coverage, Z3 and CVC4 are compiled in debug mode
and without optimizations. The coverage measurement tool
is Gcov [1]. Table 11 shows the results. The numbers repre-
sent the percentages (%) of lines (l), functions (f) and branch
(b) coverage respectively. The highest coverages are shaded.
Since SMT solvers have large code bases (Z3 has over 436K
LOC, CVC4 has over 238K LOC), 1% line coverage improve-
ment translates to thousands of additionally covered lines.
First, we observe that both Z3 and CVC4 mostly achieve less
than 30% line, function and branch coverage. This may be ex-
plained by the many mutually exclusive features that CVC4
and Z3 support. The main observation is that YinYang can
consistently increase the coverage achieved by the Bench-
mark. This indicates that YinYang can enhance benchmark
formulas and exercise previously uncovered code. Further-
more, YinYang can achieve this noticeable coverage improve-
ment in only one hour in the single-threaded mode, showing
the effectiveness of YinYang.

RQ4: Is Semantic Fusion necessary for finding bugs?
This research question investigates whether we can obtain
our bug findings with a simpler approach. As mentioned ear-
lier, Semantic Fusion consists of two main steps: (1) formula
concatenation and (2) variable fusion and inversion. Step (2)
is the core technique of Semantic Fusion. Let ConcatFuzz be
the simple concatenation tool where we solely perform step

lines functions branches
0
5
10
15
20
25
30

Z3

lines functions branches
0
5
10
15
20
25
30

CVC4

Figure 12. Coverage improvement (%) of ConcatFuzz (in
gray) and YinYang (in black) over Benchmark (in white)
averaged over all logics.

(1) and disable step (2), i.e., ConcatFuzz only combines for-
mulas by conjunction (for satisfiable formulas) and disjunc-
tion (for unsatisfiable formulas) without variable fusion and
inversion. To see whether Semantic Fusion is necessary for
triggering bugs, we ran ConcatFuzz on the ancestor seeds
of 50 reported bugs that YinYang found. In only 5 out of
50 cases, ConcatFuzz was able to retrigger the bug. This
indicates that simple formula concatenation is unable to
trigger most of the bugs found by YinYang, which shows
the necessity of the core technique of Semantic Fusion. In
addition, we also repeated the code coverage evaluation of
RQ3 to understand the code coverage difference between
ConcatFuzz and YinYang. Figure 12 shows the code cover-
age of ConcatFuzz and YinYang averaged over all logics.
The results show that both YinYang and ConcatFuzz consis-
tently achieve higher line, function and branch coverage than

PLDI ’20, June 15–20, 2020, London, UK Dominik Winterer, Chengyu Zhang, and Zhendong Su

the Benchmark. The coverage improvement of ConcatFuzz
over the benchmark, partially explains why ConcatFuzz can
retrigger some of the bugs. However, the results also re-
flect that the average code coverage of YinYang dominates
ConcatFuzz. YinYang achieves on average 1.1% more lines
(approx. 2,800 lines) in Z3 and 0.3% (approx. 480 lines) in
CVC4, which can partially explain why YinYang can trigger
more bugs than ConcatFuzz. In summary, our results show
that semantic fusion is necessary for YinYang’s effectiveness,
and code coverage and bug count correlate.

4.3 Assorted Bug Samples
This section presents a selection of bugs that we found in
CVC4 and Z3. We have found soundness bugs, segmenta-
tion faults, assertion violations and performance issues in
multiple logics. The original seed formulas φfused that trigger
the bugs are too large to be presented. We therefore present
the reduced formulas which we have obtained from bug
reduction on the original bug-triggering formulas.
Figures 13a shows an unsatisfiable formula in the string
logic QF_S. The formula has two asserts. The second assert
demands variable a to be the concatenation of b and c. The
first asserts includes the query on whether c is matched
by regex "aa"*. This is conjoined with a check on whether
c equals "0" (see lines 8 to 11). The formula is unsatisfiable
since the two conditions contradict each other. However,
Z3 reports sat on Formula 13a, which is incorrect.

Figure 13b also shows a formula in the string logic QF_S.
The formula is unsatisfiable but CVC4 incorrectly reported
sat on it. The formula has been reduced from the same
original test case as Formula 13a which also triggered a
Z3 soundness bug. CVC4 and Z3 both report sat on the
original formula. These two bugs show the benefits of our
approach over differential testing. In this case, differen-
tial testing would not be able to capture these bugs as
the results from both solvers are the same, but incorrect.
The root cause of the bug is a missed corner case in the
str.to.int reduction function for an empty string. The bug
was labeled as major in the CVC4 bug tracker.

Figure 13c shows an unsatisfiable formula in the non-linear
real arithmetic logic QF_NRA. Z3 reported sat on this
formula and gave the following incorrect model:

(define-fun e () Real 1.0)

(define-fun f () Real 2.0)

(define-fun a () Real 1.0)

(define-fun b () Real (- 1.0))

(define-fun c () Real 0.0)

(define-fun d () Real 1.0)

This model does not satisfy the formula. It causes conflicts
between two constraints — the first is the constraint on
line 10, while the second is on line 11. According to the
SMT-LIB standard, an arbitrary but consistent value vmay
be chosen for such division-by-zero predicates. Thus, the
formula is unsatisfiable. However, Z3 reported sat on the

formula. Z3 chose a positive f, and therefore v has to be
positive contradicting line 11.

Figure 13d shows an unsatisfiable formula in the QF_SLIA
logic. CVC4 incorrectly reported sat on this formula and
gave an incorrect model. The root cause for this bug is
an unsound formula simplification of CVC4. The bug is
labeled major by the CVC4 developers. They rewrote the
simplification strategy to fix the bug.

Figure 13e shows an unsatisfiable formula in the string
logic QF_S. Z3 incorrectly reported sat on this formula
and gave an incorrect model. The developers made some
major changes to fix this bug — 28 files with 486 additions
and 144 deletions were necessary to fix it. The bug is trig-
gered by an incorrect implementations of the suffixof
and prefixof operators.

Figure 13f shows a formula in quantified real arithmetic
(NRA). Z3 crashed when solving this formula with the
following message:

Failed to verify: m_util.is_numeral(rhs, _k)
[2] 25133 segmentation fault (core dumped)

According to the bug fix of the developer, the root cause
for this crash was an error in the rewriting strategy for
the comparison operators <= and >=.

4.4 Discussion
Summary. Our extensive evaluation demonstrates that

YinYang can find many bugs in state-of-the-art SMT solvers
Z3 and CVC4 (RQ1) and its findings are significant (RQ2).
The further evaluation shows that YinYang can improve the
code coverage (RQ3) and Semantic Fusion is necessary for
YinYang’s effective bug finding (RQ4).

Quality of the bug-finding results. Our 4-month test-
ing effort produced significant, high-quality results. We fo-
cused specifically on finding bugs in the default modes of
arithmetic and string solvers. As most users invoke SMT
solvers in their default modes, such bug reports are thus par-
ticularly valuable. YinYang found 29 such critical soundness
bugs, which shows the effectiveness of Semantic Fusion. In
addition, the SMT solver developers greatly appreciated our
bug finding effort and reports with comments like "great
find!", "excellent find!", "nice catch!", etc. All of our CVC4
soundness bug reports were labeled major, which are rare
on the CVC4 issue tracker — in fact, only 13 soundness bugs
in the CVC4 issue tracker are labeled major. Our bugs in Z3
have been fixed in the recent release versions, which makes
Z3 more reliable and robust.

Limitations and futurework. Semantic Fusion is shown
to be effective for SMT solver testing. It does also come with
some limitations. First, Semantic Fusion relies on the given

Validating SMT Solvers via Semantic Fusion PLDI ’20, June 15–20, 2020, London, UK

1 (declare-fun a () String)

2 (declare-fun b () String)

3 (declare-fun c () String)

4 (assert
5 (and
6 (str.in.re c

7 (re.* (str.to.re "aa")))

8 (= 0

9 (str.to.int

10 (str.replace a b

11 (str.at a (str.len a)))))

12))

13 (assert (= a (str.++ b c)))

14 (check-sat)

(a) Soundness bug in Z3: Z3 returns sat
on this unsatisfiable QF_S formula. The
formula and Formula 13b are reduced from
the same seed.
https://github.com/Z3Prover/z3/issues/2618

1 (declare-fun a () Real)

2 (declare-fun b () Real)

3 (declare-fun c () Real)

4 (declare-fun d () Real)

5 (declare-fun e () Real)

6 (declare-fun f () Real)

7 (assert
8 (and
9 (> 0 (- d f))

10 (= d (ite (>= (/ a c) f) (+ b f) f))

11 (> 0 (/ a (/ c e)))

12 (or (= e 1.0) (= e 2.0))

13 (> d 0) (= c 0)))

14 (check-sat)

(c) Soundness Bug in Z3: Z3 reported sat on
this unsatisfiable QF_NRA formula.
https://github.com/Z3Prover/z3/issues/2391

1 (declare-fun a () String)

2 (declare-fun b () String)

3 (declare-fun c () String)

4 (declare-fun d () String)

5 (assert (= a (str.++ b d)))

6 (assert (or (and
7 (= (str.indexof

8 (str.substr a 0

9 (str.len b)) "=" 0) 0)

10 (= (str.indexof b "=" 0) 1))

11 (not (= (str.suffixof "A" d)

12 (str.suffixof "A"

13 (str.replace c c d))))))

14 (check-sat)

(e) Soundness bug in Z3: Z3 reports sat on
this unsatisfiable QF_S formula.
https://github.com/Z3Prover/z3/issues/2513

1 (declare-const a String)

2 (declare-const b String)

3 (declare-const c String)

4 (declare-const d String)

5 (declare-const e String)

6 (declare-const f String)

7 (assert (or
8 (and (= c (str.++ e d))

9 (str.in.re e

10 (re.* (str.to.re "aaa")))

11 (> 0 (str.to.int d))

12 (= 1 (str.len e))

13 (= 2 (str.len c)))

14 (and (str.in.re f

15 (re.* (str.to.re "aa")))

16 (= 0

17 (str.to.int

18 (str.replace

19 (str.replace a b "")

20 "a" ""))))))

21 (assert
22 (= a (str.++ (str.++ b "a") f)))

23 (check-sat)

(b) Soundness bug in CVC4: CVC4 reports
sat on this unsatisfiable QF_S formula.
This and the formula in Figure 13a are re-
duced from the same original formula.
https://github.com/CVC4/CVC4/issues/3357

1 (declare-fun a () String)

2 (declare-fun b () String)

3 (declare-fun d () String)

4 (declare-fun e () String)

5 (declare-fun f () Int)

6 (declare-fun g () String)

7 (declare-fun h () String)

8 (assert (or
9 (not (= (str.replace "B"

10 (str.at "A" f) "") "B"))

11 (not (= (str.replace "B"

12 (str.replace "B" g "") "")

13 (str.at (str.replace

14 (str.replace a d "")

15 "C" "")

16 (str.indexof "B"

17 (str.replace

18 (str.replace a d "")

19 "C" "") 0))))))

20 (assert (= a

21 (str.++ (str.++ d "C") g)))

22 (assert (= b (str.++ e g)))

23 (check-sat)

(d) Soundness bug in CVC4: CVC4 reports
sat on this unsatisfiable QF_SLIA formula.
https://github.com/CVC4/CVC4/issues/3203

1 (declare-fun a () Real)

2 (declare-fun b () Real)

3 (declare-fun c () Real)

4 (declare-fun d () Real)

5 (declare-fun i () Real)

6 (declare-fun e () Real)

7 (declare-fun ep () Real)

8 (declare-fun f () Real)

9 (declare-fun j () Real)

10 (declare-fun g () Real)

11 (assert (or
12 (not (exists ((h Real))

13 (=> (and
14 (= 0.0 (/ b j)) (< 0.0 e))

15 (=> (= 0.0 i)

16 (= (= (<= 0.0 h)

17 (<= h ep))(= 1.0 2.0))))))

18 (not (exists ((h Real))

19 (=> (<= 0.0 (/ a h))

20 (= 0 (/ c e)))))))

21 (assert (= c (/ c g) g 0))

22 (assert (= ep (/ d f)))

23 (check-sat)

(f) Crash Bug in Z3: This NRA formula trig-
gers a segmentation fault in Z3.
https://github.com/Z3Prover/z3/issues/2449

Figure 13. Assorted SMT-LIB formulas that trigger bugs in the SMT solvers Z3 and CVC4.

seed formulas. Second, one needs to manually design the
fusion and inversion functions; devising variable fusion and
variable inversion functions by hand can be difficult. It would
be interesting future work to explore the automatic construc-
tion of variable fusion and inversion functions.

5 Related Work
We discuss three strands of related work: (1) SAT/SMT solver
validation, (2) validation of program analyzers, and (3) meta-
morphic testing.

SAT/SMT Solver Validation. FuzzSMT [7] is the first ef-
fort targeting SMT solver validation. It is based on grammar-
based blackbox fuzzing and differential testing. Brummayer
and Biere evaluated FuzzSMT on the bit-vector logic and
found 16 defects in five solvers, but no soundness bugs in Z3.
BtorMBT [26] is a model-based testing tool for Boolector [6],
an SMT solver for bit-vectors with arrays. It generates se-
quences of API calls to exploit the features of the solver.
BtorMBT did not find bugs in any mature solvers. The more
recent StringFuzz [5] focuses on performance issues in the

https://github.com/Z3Prover/z3/issues/2618
https://github.com/Z3Prover/z3/issues/2391
https://github.com/Z3Prover/z3/issues/2513
https://github.com/CVC4/CVC4/issues/3357
https://github.com/CVC4/CVC4/issues/3203
https://github.com/Z3Prover/z3/issues/2449

PLDI ’20, June 15–20, 2020, London, UK Dominik Winterer, Chengyu Zhang, and Zhendong Su

string logic. It generates test cases by either mutating and
transforming the benchmarks, or generating random valid
formulas. It found 3 performance and implementation bugs in
z3str3 by differential testing. Different from these differential
testing based approaches, Semantic Fusion tackles the test
oracle problem by construction, rather than cross-checking,
making it capable of testing solver-specific features.
The recent work of Bugariu and Müller [9] proposed a

formula synthesis approach to generating SMT formulas
in the string logic with known satisfiability. It generates
increasingly-complex formulas via satisfiability-preserving
transformations. Several bugs in Z3 were reported, while no
reported bugs in CVC4. We instead fuse two formulas and
preserve the satisfiability via fusion/inversion functions. A
closely-related problem to testing SMT solvers is the testing
of SAT solvers. FuzzSAT, CNFuzz and 3SAT [8] randomly
generate valid formulas and found 14 bugs in 7 SAT solvers
via differential testing.

Our work found 45 confirmed bugs in modern, mature
and widely-used SMT solvers, significantly more than any
prior work on SMT/SAT solver testing. Semantic Fusion is
also general and can find bugs in various logics while much
prior work focuses on the string logic.

Validation of Program Analyzers. With program an-
alyzers becoming increasingly practical and adopted, it is
critical to ensure their reliability [11]. Several recent efforts
explored this problem, targeting software model checkers,
symbolic execution engines, and various static analyzers.
Both Zhang et al. [35] and Klinger et al. [22] developed ap-
proaches to testing software model checkers — the approach
by Zhang et al. [35] is based on reachability queries, while the
approach by Klinger et al. [22] is based on differential testing.
Kapus et al. [21] used random program generation and dif-
ferential testing to find bugs in symbolic execution engines.
Wu et al. [34] found bugs in alias analyses via cross-checking
with dynamic aliasing information. Bugariu et al. [10] pro-
posed an approach for finding soundness and precision bugs
in numerical abstract domains. Qiu et al. [28] and Pauck
et al. [27] reported experiences in testing and finding defects
in analyzers for Android apps.

Many of these program analyzers, such as software model
checkers, symbolic execution engines, and program veri-
fiers, critically rely on SMT solvers. Thus, although our work
targets SMT solvers, it also helps improve the reliability of
program analyzers.

Metamorphic Testing. The test oracle problem is a long-
standing challenge in software testing. Metamorphic testing
is a general approach to this problem [13, 30]. Its key idea is
to leverage existing tests to construct additional ones with
expected results via certain metamorphic relations. For exam-
ple, the technique of equivalence modulo inputs (EMI) [23]
is a notable instance of metamorphic testing for compilers.
It constructs equivalent test programs for a seed program

with respect to a given input by strategically mutating the
seed program. To date, the general EMI-based approach and
its variants [24, 32, 36] have found more than 1,600 bugs
in GCC and Clang/LLVM. EMI and metamorphic testing in
general were also adapted to test shader compilers [18, 25].
The Semantic Fusion methodology introduced in this pa-

per is also an instance of metamorphic testing — it generates
new test formulas by fusing two existing test cases preserv-
ing their oracle. Semantic Fusion is a new and highly generic
metamorphic testing approach that we successfully applied
to SMT solver testing.

6 Conclusion
We have introduced Semantic Fusion, a novel, principled test-
ing methodology for validating SMT solvers. The key idea
behind Semantic Fusion is to construct diverse test formulas
for SMT solvers by fusing pairs of equisatisfiable formulas.
It effectively tackles both challenges of test input and oracle
generation by constructing equisatisfiable formulas as the
seed formulas via the concept of fusion and inversion func-
tions. We have designed and engineered the practical bug
detection tool YinYang to stress-test SMT solvers. Within
four months of extensive testing, we have used YinYang to
find 45 confirmed/fixed, unique bugs in Z3 and CVC4, 29
of which are the critical soundness bugs. Our effort is well-
appreciated by the SMT solver developers — it is the largest,
most successful testing campaign against SMT solvers, lead-
ing to drastically more bugs than any previous approaches.
For future work, within the context of SMT solvers, it

would be interesting to explore the automatic generation of
fusion and inversion functions, and to construct effective cus-
tomized reducers for SMT formulas. Because solver clients
often interact with the solvers via their provided APIs, it
would also be interesting to adapt Semantic Fusion to test the
solver APIs. Beyond validating SMT solvers, Semantic Fusion
is a general technique and may be adapted to other domains;
examples include the testing of database engines, compilers,
and numerical solvers. This work opens up this exciting new
direction via a successful application of Semantic Fusion to
the testing of SMT solvers.

Acknowledgements
We thank our shepherd, Isil Dillig, and the anonymous PLDI
reviewers for their valuable feedback. We are also grateful to
Tim King for a corrected proof of Proposition 1. Our special
thanks goes to the Z3 and CVC4 developers, especially Niko-
laj Bjørner, Andrew Reynolds, and Andres Nötzli, for useful
information and addressing our bug reports. Chengyu Zhang
was partially supported by China Scholarship Council, and
NSFC Projects No. 61632005 and No. 61532019.

Validating SMT Solvers via Semantic Fusion PLDI ’20, June 15–20, 2020, London, UK

References
[1] 2019. Using the GNU Compiler Collection (GCC): Gcov. Retrieved

2019-10-30 from https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
[2] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,

Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011.
CVC4. In CAV. 171–177.

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2019. The Satisfi-
ability Modulo Theories Library (SMT-LIB). Retrieved 2019-10-30
from www.SMT-LIB.org

[4] Clark Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB
Standard: Version 2.0. In SMT.

[5] Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz
Kabir, and Vijay Ganesh. 2018. StringFuzz: A fuzzer for string solvers.
In CAV. 45–51.

[6] Robert Brummayer and Armin Biere. 2009. Boolector: An Efficient
SMT Solver for Bit-Vectors and Arrays. In TACAS. 174–177.

[7] Robert Brummayer and Armin Biere. 2009. Fuzzing and delta-
debugging SMT solvers. In SMT. 1–5.

[8] Robert Brummayer, Florian Lonsing, and Armin Biere. 2010. Auto-
mated Testing and Debugging of SAT and QBF Solvers. In SAT. 44–57.

[9] Alexandra Bugariu and Peter Müller. 2020. Automatically Testing
String Solvers. In ICSE. https://doi.org/10.3929/ethz-b-000375243

[10] Alexandra Bugariu, Valentin Wüstholz, Maria Christakis, and Peter
Müller. 2018. Automatically testing implementations of numerical
abstract domains. In ASE. 768–778.

[11] Cristian Cadar and Alastair Donaldson. 2016. Analysing the Program
Analyser. In ICSE. 765–768.

[12] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs. In OSDI. 209–224.

[13] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. 1998. Metamorphic
testing: a new approach for generating next test cases. Technical Report.

[14] The International SMT Competition. 2019. SMT-COMP. Retrieved
2019-10-30 from https://smt-comp.github.io/2019/index.html

[15] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In TACAS.

[16] Rob DeLine and Rustan Leino. 2005. BoogiePL: A Typed Procedural
Language for Checking Object-Oriented Programs. Technical Report.

[17] David Detlefs, Greg Nelson, and James B. Saxe. 2005. Simplify: A
Theorem Prover for Program Checking. JACM (2005), 365–473.

[18] Alastair F Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thom-
son. 2017. Automated testing of graphics shader compilers. InOOPSLA.

[19] Vijay Ganesh, Dmitry Blotsky, Federico Mora, Ifaz Kabir, Murphy
Berzish, and Yunhui Zheng. 2019. StringFuzz. Retrieved 2019-10-30
from http://stringfuzz.dmitryblotsky.com/

[20] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: di-
rected automated random testing. In PLDI. 213–223.

[21] Timotej Kapus and Cristian Cadar. 2017. Automatic testing of symbolic
execution engines via program generation and differential testing. In
ASE. 590–600.

[22] Christian Klinger, Maria Christakis, and Valentin Wüstholz. 2019. Dif-
ferentially testing soundness and precision of program analyzers. In
ISSTA. 239–250.

[23] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation
via equivalence modulo inputs. In PLDI. 216–226.

[24] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler
bugs via guided stochastic program mutation. In OOPSLA. 386–399.

[25] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F
Donaldson. 2015. Many-core compiler fuzzing. In PLDI. 65–76.

[26] Aina Niemetz, Mathias Preiner, and Armin Biere. 2017. Model-based
API testing for SMT solvers. In SMT.

[27] Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do Android
taint analysis tools keep their promises?. In ESEC/FSE. 331–341.

[28] Lina Qiu, Yingying Wang, and Julia Rubin. 2018. Analyzing the analyz-
ers: FlowDroid/IccTA, AmanDroid, and DroidSafe. In ISSTA. 176–186.

[29] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and
Xuejun Yang. 2012. Test-case Reduction for C Compiler Bugs. In PLDI.
335–346.

[30] Sergio Segura, Gordon Fraser, Ana B Sanchez, andAntonio Ruiz-Cortés.
2016. A survey on metamorphic testing. TSE (2016), 805–824.

[31] Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D.
Dissertation. EECS Dept., UC Berkeley.

[32] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs
via live code mutation. In OOPSLA. 849–863.

[33] Emina Torlak and Rastislav Bodik. 2014. A lightweight symbolic virtual
machine for solver-aided host languages. In PLDI. 530–541.

[34] Jingyue Wu, Gang Hu, Yang Tang, and Junfeng Yang. 2013. Effective
dynamic detection of alias analysis errors. In ESEC/FSE. 279–289.

[35] Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu,
and Zhendong Su. 2019. Finding and understanding bugs in software
model checkers. In ESEC/FSE. 763–773.

[36] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal pro-
gram enumeration for rigorous compiler testing. In PLDI. 347–361.

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
www.SMT-LIB.org
https://doi.org/10.3929/ethz-b-000375243
https://smt-comp.github.io/2019/index.html
http://stringfuzz.dmitryblotsky.com/

	Abstract
	1 Introduction
	2 Illustrative Examples
	2.1 SAT Fusion
	2.2 UNSAT Fusion

	3 Approach
	3.1 Definitions
	3.2 Semantic Fusion
	3.3 Fusion and Inversion Functions
	3.4 YinYang

	4 Empirical Evaluation
	4.1 Evaluation Setup
	4.2 Quantitative Evaluation
	4.3 Assorted Bug Samples
	4.4 Discussion

	5 Related Work
	6 Conclusion
	References

